Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Определите, на какую наибольшую натуральную степень числа 2007 делится 2007!

Вниз   Решение


Хорды AC и BD окружности с центром O пересекаются в точке K. Пусть M и N – центры описанных окружностей треугольников AKB и CKD соответственно. Докажите, что  OM = KN.

ВверхВниз   Решение


Около треугольника ABC описана окружность с центром O. Вторая окружность, проходящая через точки A, B, O, касается прямой AC в точке A.
Докажите, что  AB = AC.

ВверхВниз   Решение


Вписанная в треугольник ABC окружность касается его сторон AB , BC и AC соответственно в точках K , M и N . Известно, что AC=1 , а углы MKN и ABC равны соответственно 45o и 30o . Найдите радиус окружности.

ВверхВниз   Решение


Вписанная в треугольник ABC окружность радиуса 1 касается его сторон AB , BC и AC соответственно в точках K , M и N . Известно, что MKN = ABC = 45o . Найдите стороны треугольника ABC .

ВверхВниз   Решение


Можно ли расставить по кругу 1995 различных натуральных чисел так, чтобы для каждых двух соседних чисел отношение большего из них к меньшему было простым числом?

ВверхВниз   Решение


Автор: Фольклор

В прямоугольнике АВСD точка Р – середина стороны АВ, а точка Q – основание перпендикуляра, опушенного из вершины С на PD.
Докажите, что  BQ = BC.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 50]      



Задача 53404

Темы:   [ Равные треугольники. Признаки равенства ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 2+
Классы: 8,9

Докажите признак равенства прямоугольных треугольников по катету и противолежащему углу.

Прислать комментарий     Решение

Задача 53486

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 2+
Классы: 8,9

ABCD – прямоугольник, M – середина стороны BC. Известно, что прямые MA и MD взаимно перпендикулярны и что периметр прямоугольника ABCD равен 24. Найдите его стороны.

Прислать комментарий     Решение

Задача 116155

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Признаки равенства прямоугольных треугольников ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 2+
Классы: 8,9

B равнобедренном треугольнике ABС на боковой стороне отмечена точка M так, что отрезок равен высоте треугольника, проведённой к этой стороне, а на боковой стороне AB отмечена точка K так, что угол KMС – прямой. Hайдите угол ACK.

Прислать комментарий     Решение

Задача 53905

Темы:   [ Правильный (равносторонний) треугольник ]
[ Признаки равенства прямоугольных треугольников ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

На каждой стороне правильного треугольника взято по точке. Стороны треугольника с вершинами в этих точках перпендикулярны сторонам исходного треугольника. В каком отношении каждая из взятых точек делит сторону исходного треугольника?

Прислать комментарий     Решение

Задача 116738

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки равенства прямоугольных треугольников ]
[ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

В прямоугольнике АВСD точка Р – середина стороны АВ, а точка Q – основание перпендикуляра, опушенного из вершины С на PD.
Докажите, что  BQ = BC.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .