ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точки A1, B1, C1 выбраны на сторонах BC, CA и AB треугольника ABC соответственно. Оказалось, что  AB1AC1 = CA1CB1 = BC1BA1.  Пусть OA, OB и OC – центры описанных окружностей треугольников AB1C1, A1BC1 и A1B1C. Докажите, что центр вписанной окружности треугольника OAOBOC совпадает с центром вписанной окружности треугольника ABC.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]      



Задача 116760

Темы:   [ Вписанные и описанные окружности ]
[ Признаки равенства прямоугольных треугольников ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол равен половине центрального ]
[ Углы между биссектрисами ]
Сложность: 4-
Классы: 9,10

Точки A1, B1, C1 выбраны на сторонах BC, CA и AB треугольника ABC соответственно. Оказалось, что  AB1AC1 = CA1CB1 = BC1BA1.  Пусть IA, IB и IC – центры окружностей, вписанных в треугольники AB1C1, A1BC1 и A1B1C, соответственно. Докажите, что центр описанной окружности треугольника IAIBIC совпадает с центром вписанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 116776

Темы:   [ Вписанные и описанные окружности ]
[ Признаки равенства прямоугольных треугольников ]
[ Пересекающиеся окружности ]
Сложность: 4
Классы: 10,11

Точки A1, B1, C1 выбраны на сторонах BC, CA и AB треугольника ABC соответственно. Оказалось, что  AB1AC1 = CA1CB1 = BC1BA1.  Пусть OA, OB и OC – центры описанных окружностей треугольников AB1C1, A1BC1 и A1B1C. Докажите, что центр вписанной окружности треугольника OAOBOC совпадает с центром вписанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 53935

Темы:   [ Вспомогательные равные треугольники ]
[ Диаметр, основные свойства ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 2+
Классы: 8,9

Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются в точке P.
Докажите, что треугольники APD и BPC равнобедренные.

Прислать комментарий     Решение

Задача 53355

Темы:   [ Вспомогательные равные треугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 3-
Классы: 8,9

На диагонали AC квадрата ABCD взята точка M, причём  AM = AB.  Через точку M проведена прямая, перпендикулярная прямой AC и пересекающая BC в точке H. Докажите, что  BH = HM = MC.

Прислать комментарий     Решение

Задача 64795

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 3
Классы: 7,8

На сторонах BC и CD квадрата ABCD отмечены точки M и N соответственно так, что лучи AM и AN делят угол BAD на три равные части. ME – высота треугольника MAN. Найдите угол EDN.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .