ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В классе 20 школьников. Было устроено несколько экскурсий, в каждой из которых участвовало хотя бы четверо школьников этого класса.
Докажите, что найдётся такая экскурсия, что каждый из участвовавших в ней школьников принял участие по меньшей мере в 1/17 всех экскурсий.

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 126]      



Задача 64711

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Исследование квадратного трехчлена ]
Сложность: 4-
Классы: 8,9

В городе Плоском нет ни одной башни. Для развития туризма жители города собираются построить несколько башен общей высотой в 30 этажей. Инспектор Высотников, поднимаясь на каждую башню, считает число более низких башен, а потом складывает получившиеся величины. После чего инспектор рекомендует город тем сильнее, чем получившаяся величина больше. Сколько и какой высоты башен надо построить жителям, чтобы получить наилучшую возможную рекомендацию?

Прислать комментарий     Решение

Задача 65629

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 5,6,7

Вася живет в многоквартирном доме. В каждом подъезде дома одинаковое количество этажей, на каждом этаже по четыре квартиры, каждая квартира имеет одно-, дву- или трёхзначный номер. Вася заметил, что количество квартир с двузначным номером у него в подъезде в десять раз больше количества подъездов в доме. Сколько всего квартир может быть в этом доме?

Прислать комментарий     Решение

Задача 116824

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 10,11

В классе 20 школьников. Было устроено несколько экскурсий, в каждой из которых участвовало хотя бы четверо школьников этого класса.
Докажите, что найдётся такая экскурсия, что каждый из участвовавших в ней школьников принял участие по меньшей мере в 1/17 всех экскурсий.

Прислать комментарий     Решение

Задача 66832

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 4
Классы: 8,9,10,11

У Пети было несколько сторублёвок, других денег не было. Петя стал покупать книги (каждая книга стоит целое число рублей) и получать сдачу мелочью (монетами в 1 рубль). При покупке дорогой книги (не дешевле 100 рублей) Петя расплачивался только сторублёвками (минимальным необходимым их количеством), а при покупке дешёвой (дешевле 100 рублей) расплачивался мелочью, если хватало, а если не хватало – сторублёвкой. К моменту, когда сторублёвок не осталось, Петя потратил на книги ровно половину своих денег. Мог ли Петя потратить на книги хотя бы 5000 рублей?

Прислать комментарий     Решение

Задача 97882

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9

Автор: Фомин С.В.

Два шахматиста играют между собой в шахматы с часами (сделав ход, шахматист останавливает свои часы и пускает часы другого). Известно, что после того, как оба сделали по 40 ходов, часы обоих шахматистов показывали одно и то же время: 2 часа 30 мин.

  а) Докажите, что в ходе партии был момент, когда часы одного обгоняли часы другого не менее, чем на 1 мин. 51 сек.
  б) Можно ли утверждать, что в некоторый момент разница показаний часов была равна 2 мин.?

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 126]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .