ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Коэффициенты квадратного уравнения  ax² + bx + c = 0  удовлетворяют условию  2a + 3b + 6c = 0.
Докажите, что это уравнение имеет корень на интервале  (0, 1).

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 117]      



Задача 116889

Темы:   [ Исследование квадратного трехчлена ]
[ Теорема о промежуточном значении. Связность ]
[ Приложения интеграла (прочее) ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

Коэффициенты квадратного уравнения  ax² + bx + c = 0  удовлетворяют условию  2a + 3b + 6c = 0.
Докажите, что это уравнение имеет корень на интервале  (0, 1).

Прислать комментарий     Решение

Задача 116976

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 3+
Классы: 5,6,7

В кафе Цветочного города автомат выдаёт пончик, если ввести в него число x, при котором значение выражения  x² – 9x + 13  отрицательно. А если ввести число x, при котором отрицательно значение выражения  x² + x – 5,  то автомат выдаёт сироп. Сможет ли Незнайка, введя в автомат всего одно число, получить и то и другое?

Прислать комментарий     Решение

Задача 34939

Темы:   [ Исследование квадратного трехчлена ]
[ Квадратные уравнения. Формула корней ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Дан приведенный квадратный трёхчлен  f(x) = x² + bx + c,  имеющий два различных корня. Обозначим за D его дискриминант  (D = b² – 4c).  Сколько корней имеет уравнение  

Прислать комментарий     Решение

Задача 35762

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 4-
Классы: 8,9

Квадратный трёхчлен  ax² + bx + c  имеет два действительных корня. Верно ли, что трёхчлен  a101x² + b101x + c101  также имеет два действительных корня?

Прислать комментарий     Решение

Задача 60939

Темы:   [ Исследование квадратного трехчлена ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 4-
Классы: 8,9,10

Пусть α – корень уравнения  x² + px + q = 0,  а β – уравнения  x² – pxq = 0.  Докажите, что между α и β лежит корень уравнения  x² – 2px – 2q = 0.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 117]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .