ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Графы" (А. Савин) Статья "Элементы теории графов" (В. Фосс) Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Куб с ребром n составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких n это возможно? Решение |
Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 383]
На конгресс собрались учёные, среди которых есть друзья. Оказалось, что каждые два из них, имеющие на конгрессе равное число друзей, не имеют общих друзей. Доказать, что найдётся учёный, который имеет ровно одного друга из числа участников конгресса.
Каждые две из шести ЭВМ соединены своим проводом. Укажите, как раскрасить каждый из этих проводов в один из пяти цветов так, чтобы из каждой ЭВМ выходило пять проводов разного цвета.
В квадратной таблице из 9×9 клеток отмечены 9 клеток, лежащие на пересечении второй, пятой и восьмой строк со вторым, пятым и восьмым столбцами. Сколькими путями можно из левой нижней клетки попасть в правую верхнюю, двигаясь только по неотмеченным клеткам вверх или вправо?
В основании призмы лежит n-угольник. Требуется раскрасить все 2n её вершин тремя красками так, чтобы каждая вершина была связана рёбрами с вершинами всех трёх цветов.
Куб с ребром n составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких n это возможно?
Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 383] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|