ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что число, имеющее нечётное число делителей, является точным квадратом.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 418]      



Задача 64680

Темы:   [ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 5,6,7

Автор: Шноль Д.Э.

Сумма трёх различных наименьших делителей некоторого числа A равна 8. На сколько нулей может оканчиваться число A?

Прислать комментарий     Решение

Задача 66991

Темы:   [ Делимость чисел. Общие свойства ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3-
Классы: 6,7

Ваня расставил в кружках различные цифры, а внутри каждого треугольника записал либо сумму, либо произведение цифр в его вершинах. Потом он стёр цифры в кружочках. Впишите в кружочки различные цифры так, чтобы условие выполнялось.

Прислать комментарий     Решение

Задача 107706

Темы:   [ Делимость чисел. Общие свойства ]
[ Инварианты ]
Сложность: 3-
Классы: 6,7,8

Сумасшедший кассир меняет любые две монеты на любые три по вашему выбору, а любые три – на любые две. Сможет ли Петя обменять у него 100 монет достоинством 1 рубль на 100 монет достоинством 1 форинт, отдав ему при обмене ровно 2001 монету?

Прислать комментарий     Решение

Задача 116385

Темы:   [ Делимость чисел. Общие свойства ]
[ Теория алгоритмов (прочее) ]
Сложность: 3-
Классы: 8,9

Саша пишет на доске последовательность натуральных чисел. Первое число  N > 1  написано заранее. Новые натуральные числа он получает так: вычитает из последнего записанного числа или прибавляет к нему любой его делитель, больший 1. При любом ли натуральном  N > 1  Саша сможет написать на доске в какой-то момент число 2011?

Прислать комментарий     Решение

Задача 30365

Темы:   [ Делимость чисел. Общие свойства ]
[ Количество и сумма делителей числа ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 6,7,8

Докажите, что число, имеющее нечётное число делителей, является точным квадратом.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 418]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .