ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Имеется две кучки спичек: а) 101 спичка и 201 спичка; б) 100 спичек и 201 спичка. За ход разрешается уменьшить количество спичек в одной из кучек на число, являющееся делителем количества спичек в другой кучке. Выигрывает тот, после чьего хода спичек не остается. Решение |
Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 1308]
Первым ходом закрашивается клеточка, граничащая (по стороне) с начальной, а каждым следующим ходом — клетка, граничащая с только что закрашенной. Повторно клетки красить нельзя. Тот, кто не может сделать ход, проигрывает. Кто — начинающий или его соперник — победит в этой игре, как бы ни играл его партнёр? Рассмотрите случаи: а) Начальная клетка — угловая, поле любого размера; б) Поле и начальная клетка как на рисунке к этому заданию; в) Общий случай: поле любого размера, и начальная клетка в нём произвольная. г) Дополнительное задание. Можно подумать, что начальная клетка определяет исход партии независимо от действий игроков. Нарисуйте, однако, на каком-нибудь поле примеры таких двух партий с одной и той же начальной клеткой, чтобы в первой побеждал начинающий, а во второй — его партнёр. Для удобства нумеруйте клетки: начальная — 0, первым ходом красится клетка 1, вторым — 2 и т. д.
Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 1308] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|