Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Двое мальчиков играют в такую игру: они по очереди ставят ладьи на шахматную доску. Выигрывает тот, при ходе которого все клетки доски оказываются битыми поставленными фигурами. Кто выиграет, если оба стараются играть наилучшим образом?

Вниз   Решение


Автор: Чичин В.

Постройте треугольник по двум сторонам так, чтобы медиана, проведённая к третьей стороне, делила угол треугольника в отношении  1 : 2.

ВверхВниз   Решение


В круге проведены два диаметра AB и CD, M — некоторая точка. Известно, что AM = 15, BM = 20, CM = 24. Найдите DM.

ВверхВниз   Решение


Неравнобедренный треугольник ABC вписан в окружность с центром O и описан около окружности с центром I. Точка B', симметричная точке B относительно прямой OI, лежит внутри угла ABI. Докажите, что касательные к описанной окружности треугольника BB'I, проведённые в точках B' и I, пересекаются на прямой AC.

ВверхВниз   Решение


Каждую букву исходного сообщения заменили её двузначным порядковым номером в русском алфавите согласно таблице:

Полученную цифровую последовательность разбили (справа налево) на трёхзначные цифровые группы без пересечений и пропусков. Затем каждое из полученных трёхзначных чисел умножили на 77 и оставили только три последние цифры произведения. В результате получилась следующая последовательность цифр:  317564404970017677550547850355.  Восстановите исходное сообщение.

ВверхВниз   Решение


Окружность с центром на диагонали AC трапеции ABCD ( BC || AD ) проходит через вершины A и B , касается стороны CD в точке C и пересекает основание AD в точке E . Найдите площадь трапеции ABCD , если BC=2 , CD=10 .

ВверхВниз   Решение


Равнобедренные треугольники ABC  (AB = BC)  и  A1B1C1   (A1B1 = B1C1)  подобны и  BC : B1C1 = 4 : 3.  Вершина B1 расположена на стороне AC, вершины A1 и C1 – соответственно на продолжениях стороны BA за точку A и стороны CB за точку B, причём  A1C1BC.  Найдите угол B.

ВверхВниз   Решение


Докажите, что уравнение  1/x1/y = 1/n  имеет единственное решение в натуральных числах тогда и только тогда, когда n – простое число.

Вверх   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 367]      



Задача 30665

Темы:   [ Уравнения в целых числах ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10

Решить в целых числах уравнение  1/a + 1/b + 1/c = 1.

Прислать комментарий     Решение

Задача 30666

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9

Решить в целых числах уравнение  x² – y² = 1988.

Прислать комментарий     Решение

Задача 30667

Тема:   [ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9

Докажите, что уравнение  1/x1/y = 1/n  имеет единственное решение в натуральных числах тогда и только тогда, когда n – простое число.

Прислать комментарий     Решение

Задача 30668

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 6,7

Решите уравнение в целых числах:  x³ + 3 = 4y(y + 1).

Прислать комментарий     Решение

Задача 31291

Темы:   [ Уравнения в целых числах ]
[ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 6,7,8

Решить в целых числах уравнение  x² + y² + z² = 4(xy + yz + zx).

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 367]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .