ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Изначально на столе лежат три кучки из 100, 101 и 102 камней соответственно. Илья и Костя играют в следующую игру. За один ход каждый из них может взять себе один камень из любой кучи, кроме той, из которой он брал камень на своем предыдущем ходе (при своём первом ходе каждый игрок может брать камень из любой кучки). Ходы игроки делают по очереди, начинает Илья. Проигрывает тот, кто не может сделать ход. Кто из игроков может выиграть, как бы ни играл соперник? Коэффициенты квадратного уравнения x² + px + q = 0 изменили не больше чем на 0,001. Имеется куб размером 10×10×10, состоящий из маленьких единичных кубиков. В центре O одного из угловых кубиков сидит кузнечик. Он может прыгать в центр кубика, имеющего общую грань с тем, в котором кузнечик находится в данный момент; причём так, чтобы расстояние до точки O увеличивалось. Сколькими способами кузнечик может допрыгать до кубика, противоположного исходному? Решите уравнение в целых числах: x³ + 3 = 4y(y + 1). |
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 367]
Решить в целых числах уравнение 1/a + 1/b + 1/c = 1.
Решить в целых числах уравнение x² – y² = 1988.
Докажите, что уравнение 1/x – 1/y = 1/n имеет единственное решение в натуральных числах тогда и только тогда, когда n – простое число.
Решите уравнение в целых числах: x³ + 3 = 4y(y + 1).
Решить в целых числах уравнение x² + y² + z² = 4(xy + yz + zx).
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 367]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке