ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На каждом борту лодки должно сидеть по четыре человека. Сколькими способами можно выбрать команду для этой лодки, если есть 31 кандидат, причём десять человек хотят сидеть на левом борту лодки, двенадцать – на правом, а девяти безразлично где сидеть?

   Решение

Задачи

Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 1235]      



Задача 109462

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 3-
Классы: 7,8,9

Из натурального числа вычли сумму его цифр и получили 2007. Каким могло быть исходное число?
Прислать комментарий     Решение


Задача 30404

Темы:   [ Арифметика остатков (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8,9

Найдите последнюю цифру числа  1² + 2² + ... + 99².

Прислать комментарий     Решение

Задача 30747

Темы:   [ Сочетания и размещения ]
[ Перебор случаев ]
[ Правило произведения ]
Сложность: 3-
Классы: 7,8

На каждом борту лодки должно сидеть по четыре человека. Сколькими способами можно выбрать команду для этой лодки, если есть 31 кандидат, причём десять человек хотят сидеть на левом борту лодки, двенадцать – на правом, а девяти безразлично где сидеть?

Прислать комментарий     Решение

Задача 32046

Темы:   [ Линейные неравенства и системы неравенств ]
[ Разбиения на пары и группы; биекции ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3-
Классы: 6,7,8

Дано 25 чисел. Сумма любых четырех из них положительна. Докажите, что сумма их всех тоже положительна.

Прислать комментарий     Решение


Задача 32052

Темы:   [ Классическая комбинаторика (прочее) ]
[ Процессы и операции ]
Сложность: 3-
Классы: 7,8,9,10

Было семь ящиков. В некоторые из них положили еще по семь ящиков (не вложенных друг в друга) и т. д. В итоге стало 10 непустых ящиков.
Сколько всего стало ящиков?

Прислать комментарий     Решение

Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 1235]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .