ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Поиск инварианта" (Ионин Ю., Курляндчик Л.) Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Доказать, что уравнение 4k – 4l = 10n не имеет решений в целых числах.
Сформулируйте теорему, обратную теореме Пифагора. Верна ли она?
В равнобедренном треугольнике ABC длина основания AC равна
2
Решить в целых числах уравнение xy = x + y. Аня, Боря и Вася решили пойти на "Ёлку". Они договорились встретиться на автобусной остановке, но не знают, кто во сколько придёт. Каждый из них может прийти в случайный момент времени с 15.00 до 16.00. Вася самый терпеливый из всех: если он придёт и на остановке не будет ни Ани, ни Бори, то он будет ждать кого-нибудь из них 15 минут, и если никого не дождётся, пойдёт на "Ёлку" один. Боря менее терпеливый: он будет ждать лишь 10 минут. Аня самая нетерпеливая: она вообще не будет ждать. Однако если Боря и Вася встретятся, то они будут ждать Аню до 16.00. Какова вероятность того, что на "Ёлку" они пойдут все вместе? В странах Диллии и Даллии денежными единицами являются диллеры и даллеры соответственно, причем в Диллии диллер меняется на 10 даллеров, а в Даллии даллер меняется на 10 диллеров. Начинающий финансист имеет 1 диллер и может свободно перезжать из одной страны в другую и менять свои деньги в обеих странах. Докажите, что количество даллеров у него никогда не сравняется с количеством диллеров.
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 199]
В вершинах шестиугольника записаны числа 12, 1, 10, 6, 8, 3 (в таком порядке). За один ход разрешено выбрать две соседние вершины и к числам, стоящим в данных вершинах, одновременно прибавить единицу или одновременно вычесть из них единицу. Можно ли получить в итоге шесть чисел в таком порядке:
Круг разделён на шесть секторов, в каждом из которых стоит фишка. Разрешается за один ход сдвинуть любые две фишки в соседние с ними сектора.
На доске выписаны числа 1, 2, ..., 20. Разрешается стереть любые два числа a и b и заменить их на число ab + a + b.
В таблице 8×8 все четыре угловые клетки закрашены чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.
В странах Диллии и Даллии денежными единицами являются диллеры и даллеры соответственно, причем в Диллии диллер меняется на 10 даллеров, а в Даллии даллер меняется на 10 диллеров. Начинающий финансист имеет 1 диллер и может свободно перезжать из одной страны в другую и менять свои деньги в обеих странах. Докажите, что количество даллеров у него никогда не сравняется с количеством диллеров.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 199]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке