ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На доске написано число 8n. У него вычисляется сумма цифр, у полученного числа вновь вычисляется сумма цифр, и так далее, до тех пор, пока не получится однозначное число. Что это за число, если n = 1989?

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 199]      



Задача 104028

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8,9

У племени семпоальтеков было 24 слитка золота, 26 редких жемчужин и 25 стеклянных бус. У Кортеса они могут обменять слиток золота и жемчужину на одни бусы, у Монтесумы – один слиток и одни бусы на одну жемчужину, а у тотонаков – одну жемчужину и одни бусы на один золотой слиток. После долгих обменов у семпоальтеков осталось только одна вещь. Какая?

Прислать комментарий     Решение

Задача 105053

Темы:   [ Инварианты ]
[ Средние величины ]
Сложность: 3
Классы: 7,8,9

На доске в лаборатории написаны два числа. Каждый день старший научный сотрудник Петя стирает с доски оба числа и пишет вместо них их среднее арифметическое и среднее гармоническое. Утром первого дня на доске были написаны числа 1 и 2. Найдите произведение чисел, записанных на доске вечером 1999-го дня.

Прислать комментарий     Решение

Задача 107620

Темы:   [ Инварианты ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 7,8,9

На каждом километре шоссе между сёлами Ёлкино и Палкино стоит столб с табличкой, на одной стороне которой написано, сколько километров до Ёлкино, а на другой – до Палкино. Боря заметил, что на каждом столбе сумма всех цифр равна 13. Каково расстояние от Ёлкино до Палкино?

Прислать комментарий     Решение

Задача 108406

Темы:   [ Инварианты ]
[ Процессы и операции ]
Сложность: 3
Классы: 7,8,9

На доске написаны числа 1 и 2. Каждый день научный консультант Выбегалло заменяет два написанных числа на их среднее арифметическое и среднее гармоническое.
а) Однажды одним из написанных чисел (каким — неизвестно) оказалось 941664/665857. Каким в этот момент было другое число?
б) Будет ли когда-нибудь написано число 35/24?
Прислать комментарий     Решение


Задача 30769

Тема:   [ Инварианты ]
Сложность: 3
Классы: 7,8

На доске написано число 8n. У него вычисляется сумма цифр, у полученного числа вновь вычисляется сумма цифр, и так далее, до тех пор, пока не получится однозначное число. Что это за число, если n = 1989?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 199]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .