Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

В окружность радиуса R вписан шестиугольник ABCDEF. Известно, что $ \angle$A = $ \angle$C = $ \angle$E, AB = a, CD = b, EF = c. Найдите площадь шестиугольника ABCDEF.

Вниз   Решение


С помощью циркуля и линейки постройте треугольник ABC, если даны его вершины A и B, прямая l, на которой лежит вершина C, и разность углов $ \angle$A - $ \angle$B = $ \varphi$.

ВверхВниз   Решение


Точка D лежит на стороне BC равнобедренного треугольника ABC (AB = CB), причём CD = $ {\frac{1}{4}}$CB, $ \angle$ACB = arccos$ {\frac{\sqrt{2}}{\sqrt{3}}}$, AD = $ {\frac{3}{4}}$. Найдите площадь треугольника ABC.

ВверхВниз   Решение


Потроить треугольник по $ \angle$A, высоте к стороне a ha и полупериметру p.

ВверхВниз   Решение


Биссектриса угла $A$ треугольника $ABC$ при продолжении пересекает описанную около него окружность $\omega$ в точке $W$. Окружность $s$, построенная на отрезке $AH$ как на диаметре ($H$ – ортоцентр в треугольнике $ABC$), пересекает $\omega$ в точке $P$. Восстановите треугольник $ABC$, если остались точки $A$, $P$, $W$.

ВверхВниз   Решение


На бесконечном листе клетчатой бумаги N клеток окрашено в черный цвет. Докажите, что из этого листа можно вырезать конечное число квадратов так, что будут выполняться два условия: 1) все черные клетки лежат в вырезанных квадратах; 2) в любом вырезанном квадрате K площадь черных клеток составит не менее  1/5 и не более  4/5 площади K.

ВверхВниз   Решение


Число N записано в десятичной системе счисления  N = .  Докажите следующие признаки делимости:
  а) N делится на 3  ⇔  an + an–1 + ... + a1 + a0 делится на 3;
  б) N делится на 9  ⇔  an + an–1 + ... + a1 + a0 делится на 9;
  в) N делится на 11  ⇔  (–1)nan + (–1)n–1an–1 + ... + a1 + a0 делится на 11.

ВверхВниз   Решение


Найдите сумму квадратов расстояний от точки M, взятой на диаметре некоторой окружности, до концов любой из параллельных этому диаметру хорд, если радиус окружности равен R, а расстояние от точки M до центра окружности равно a.

ВверхВниз   Решение


За дядькой Черномором выстроились чередой бесконечное число богатырей разного роста. Докажите, что он может приказать части из них выйти из строя так, чтобы в строю осталось бесконечное число богатырей и все они стояли по росту (в порядке возрастания или убывания).

ВверхВниз   Решение


Сформулируйте и докажите признак делимости на
  а) делитель числа "основание системы счисления – 1" (аналогичный признаку делимости на 3).
  б) "основание + 1" (аналогичный признаку делимости на 11).
  в) делитель числа "основание + 1" (аналога нет!).

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]      



Задача 103995

 [Делимость на 7]
Тема:   [ Признаки делимости (прочее) ]
Сложность: 3
Классы: 8,9

Дано трёхзначное число, у которого первая и последняя цифра одинаковые.
Доказать, что число делится на 7 тогда и только тогда, когда делится на 7 сумма второй и третьей цифр.

Прислать комментарий     Решение

Задача 30638

Тема:   [ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 8,9

а) Дано шестизначное число  abcdef,  причём  abc + def  делится на 37. Докажите, что и само число делится на 37.
б) Сформулируйте и докажите признак делимости на 37.

Прислать комментарий     Решение

Задача 30838

Тема:   [ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 8

Сформулируйте и докажите признак делимости на
  а) делитель числа "основание системы счисления – 1" (аналогичный признаку делимости на 3).
  б) "основание + 1" (аналогичный признаку делимости на 11).
  в) делитель числа "основание + 1" (аналога нет!).

Прислать комментарий     Решение

Задача 60789

 [Признаки делимости на 3, 9 и 11]
Тема:   [ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 7,8,9

Число N записано в десятичной системе счисления  N = .  Докажите следующие признаки делимости:
  а) N делится на 3  ⇔  an + an–1 + ... + a1 + a0 делится на 3;
  б) N делится на 9  ⇔  an + an–1 + ... + a1 + a0 делится на 9;
  в) N делится на 11  ⇔  (–1)nan + (–1)n–1an–1 + ... + a1 + a0 делится на 11.

Прислать комментарий     Решение

Задача 60791

 [Признаки делимости на 2.4, 8, 5 и 25]
Тема:   [ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 7,8,9

Сформулируйте и докажите признаки делимости на числа 2, 4, 8, 5 и 25.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .