ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

С помощью циркуля и линейки постройте на данной окружности точку, которая находилась бы на данном расстоянии от данной прямой.

Вниз   Решение


Сколько осей симметрии может быть у треугольника?

ВверхВниз   Решение


На диагоналях D1A , A1B , B1C , C1D граней куба ABCDA1B1C1D1 взяты соответственно точки M , N , P , Q , причём

D1M:D1A = BN:BA1 = B1P:B1C = DQ:DC1 = μ,

а прямые MN и PQ взаимно перпендикулярны. Найдите μ .

ВверхВниз   Решение


Докажите, что сумма внутренних двугранных углов трёхгранного угла больше 180o и меньше 540o .

ВверхВниз   Решение


a, b и n – натуральные числа, и n нечётно. Докажите, что если числитель и знаменатель дроби     делятся на n, то и сама дробь делится на n.

ВверхВниз   Решение


Решите уравнение  

ВверхВниз   Решение


В треугольной пирамиде SABC все рёбра, кроме SA , равны a , а ребро SA равно высоте треугольника ABC . Через точку A параллельно прямой BC проведена плоскость P , образующая с прямой AB угол, равный arcsin . Найдите площадь сечения пирамиды плоскостью P и радиус шара с центром на прямой, проходящей через точку S перпендикулярно плоскости треугольника ABC , касающегося плоскости P и плоскости треугольника SBC .

ВверхВниз   Решение


При каких n многочлен  (x + 1)nxn – 1  делится на:
  а)  x² + x + 1;   б)  (x² + x + 1)²;   в) (x² + x + 1)³?

ВверхВниз   Решение


а) Из точки A, лежащей вне окружности, выходят лучи AB и AC, пересекающие эту окружность. Докажите, что величина угла BAC равна полуразности угловых величин дуг окружности, заключенных внутри этого угла.

б) Вершина угла BAC расположена внутри окружности. Докажите, что величина угла BAC равна полусумме угловых величин дуг окружности, заключенных внутри угла BAC и внутри угла, симметричного ему относительно вершины A.

ВверхВниз   Решение


В треугольнике две стороны равны 3,14 и 0,67. Найдите третью сторону, если известно, что её длина является целым числом.

ВверхВниз   Решение


Что больше:  1234567·1234569  или  1234568²?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 592]      



Задача 87987

Темы:   [ Линейные неравенства и системы неравенств ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6,7

6 карасей легче 5 окуней, но тяжелее 10 лещей. Что тяжелее – 2 карася или 3 леща?

Прислать комментарий     Решение

Задача 88245

Темы:   [ Линейные неравенства и системы неравенств ]
[ Текстовые задачи (прочее) ]
Сложность: 2
Классы: 5,6,7

Можно ли разлить 50 л бензина по трём бакам так, чтобы в первом баке было на 10 л больше, чем во втором, а после переливания 26 л из первого бака в третий в третьем баке стало бы столько же бензина, сколько во втором?

Прислать комментарий     Решение

Задача 116021

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

Найдите наибольшее натуральное n, при котором  n200 < 5300.

Прислать комментарий     Решение

Задача 116599

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 2
Классы: 8,9,10

Докажите, что для любого натурального n выполнено неравенство  (n – 1)n+1(n + 1)n–1 < n2n.

Прислать комментарий     Решение

Задача 30850

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 2+
Классы: 7,8

Что больше:  1234567·1234569  или  1234568²?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 592]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .