ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На урок физкультуры пришло $12$ детей, все разной силы. Учитель $10$ раз делил их на две команды по $6$ человек, каждый раз новым способом, и проводил состязание по перетягиванию каната. Могло ли оказаться так, что все $10$ раз состязание закончилось вничью (то есть суммы сил детей в командах были равны)? Вася выбрал $100$ различных натуральных чисел из множества ${1, 2, 3, \ldots, 120}$ и расставил их в некотором порядке вместо звёздочек в выражении (всего $100$ звёздочек и $50$ знаков корня) $$ \sqrt{(* + *)\cdot \sqrt{(* + *) \cdot \sqrt{ \ldots \sqrt{*+*}}}} . $$ Могло ли значение полученного выражения оказаться целым числом? Что больше: (1,01)1000 или 1000? |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 100]
Найдите наибольшее значение выражения х + у, если
Что больше
Докажите, что 2100 + 3100 < 4100.
Что больше: (1,01)1000 или 1000?
a, b, c – натуральные числа и 1/a + 1/b + 1/c < 1. Докажите, что 1/a + 1/b + 1/c ≤ 41/42.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 100]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке