ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 55]      



Задача 116235

Тема:   [ Показательные функции и логарифмы (прочее) ]
Сложность: 5
Классы: 11

При какой перестановке a1, a2, ..., a2011 чисел 1, 2, ..., 2011 значение выражения

будет наибольшим?

Прислать комментарий     Решение

Задача 34935

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Показательные неравенства ]
Сложность: 2+
Классы: 7,8,9

Какое из чисел больше: 3111 или 1714?

Прислать комментарий     Решение

Задача 109438

Темы:   [ Характеристические свойства и рекуррентные соотношения ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 3-
Классы: 8,9,10,11

Функция f такова, что для любых положительных x и y выполняется равенство f(xy) = f(x) + f(y) . Найдите f(2007) , если f() = 1 .
Прислать комментарий     Решение


Задача 30857

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 3
Классы: 6,7

Сколько цифр у числа 21000?

Прислать комментарий     Решение

Задача 111261

Темы:   [ Разложение на множители ]
[ Показательные уравнения ]
Сложность: 3
Классы: 9,10,11

Найдите все положительные корни уравнения  xx + x1–x = x + 1.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 55]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .