ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На урок физкультуры пришло $12$ детей, все разной силы. Учитель $10$ раз делил их на две команды по $6$ человек, каждый раз новым способом, и проводил состязание по перетягиванию каната. Могло ли оказаться так, что все $10$ раз состязание закончилось вничью (то есть суммы сил детей в командах были равны)? Вася выбрал $100$ различных натуральных чисел из множества ${1, 2, 3, \ldots, 120}$ и расставил их в некотором порядке вместо звёздочек в выражении (всего $100$ звёздочек и $50$ знаков корня) $$ \sqrt{(* + *)\cdot \sqrt{(* + *) \cdot \sqrt{ \ldots \sqrt{*+*}}}} . $$ Могло ли значение полученного выражения оказаться целым числом? Что больше: (1,01)1000 или 1000? Решите ребус: АХ×УХ = 2001. Существует ли набор чисел, сумма которых равна 1, а сумма их квадратов меньше 0,01? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 100]
Найдите все степени чисел 2, 3, 5, 6, 7, 11, 12, лежащие в промежутке от 1 до 10000 и выстройте их по порядку. Найдите среди них пары чисел, разность между которыми не превосходит 10.
Что больше: 1234567/7654321 или 1234568/7654322?
Сколько цифр у числа 21000?
Докажите, что 100! < 50100.
Существует ли набор чисел, сумма которых равна 1, а сумма их квадратов меньше 0,01?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 100]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке