ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Докажите, что у четырёхугольника, вписанного в окружность, суммы противоположных углов равны 180o.
Найдите углы четырёхугольника ABCD, вершины которого расположены на окружности, если ∠ABD = 74°, ∠DBC = 38°, ∠BDC = 65°.
Можно ли описать окружность около четырёхугольника, углы которого по порядку относятся как: а) 2:4:5:3; б) 5:7:8:9?
Три последовательных угла вписанного четырёхугольника относятся как 1:2:3. Найдите все углы четырёхугольника.
Биллиард имеет форму выпуклого четырехугольника ABCD. Из точки K стороны AB выпустили биллиардный шар, который отразился в точках L, M, N от сторон BC, CD, DA, возвратился в точку K и вновь вышел на траекторию KLMN. Докажите, что четырехугольник ABCD можно вписать в окружность. Докажите, что произведение любых трёх последовательных натуральных чисел делится на 6. На затонувшей каравелле XIV века были найдены шесть мешков с золотыми монетами. В первых четырёх мешках оказалось по 60, 30, 20 и 15 золотых монет. Когда подсчитали монеты в оставшихся двух, кто-то заметил, что число монет в мешках составляет некую последовательность. Приняв это к сведению, смогли бы вы сказать, сколько монет в пятом и шестом мешках? a, b, c, d – положительные числа. Докажите, что по крайней мере одно из неравенств |
Страница: 1 2 3 >> [Всего задач: 12]
Пусть A, B и C – три числа, большие 0 и меньшие 1, K – наибольшее из них. Докажите, что 1 – (1 – A)(1 – B)(1 – C) > K.
Докажите, что три неравенства
a, b, c, d – положительные числа. Докажите, что по крайней мере одно из неравенств
Сто положительных чисел C1, C2, ..., C100 удовлетворяют условиям
Сумма n положительных чисел x1, x2, x3, ..., xn равна 1.
Страница: 1 2 3 >> [Всего задач: 12]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке