ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Дано шесть натуральных чисел. Все они различны и дают в сумме 22. Найти эти числа и доказать, что других нет.

б) Тот же вопрос про 100 чисел, дающих в сумме 5051.

   Решение

Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 488]      



Задача 88082

Темы:   [ Принцип Дирихле (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Раскладки и разбиения ]
[ Доказательство от противного ]
Сложность: 2
Классы: 5,6,7

Можно ли разложить 44 шарика на 9 кучек так, чтобы количество шариков в разных кучках было различным?

Прислать комментарий     Решение

Задача 35578

Темы:   [ Комбинаторика (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 2+
Классы: 8,9

Сколькими способами можно переставить числа от 1 до 100 так, чтобы соседние числа отличались не более, чем на 1?

Прислать комментарий     Решение

Задача 107674

Темы:   [ Признаки и свойства параллелограмма ]
[ Наименьший или наибольший угол ]
[ Общие четырехугольники ]
Сложность: 2+
Классы: 7,8,9

Из всякого ли выпуклого четырехугольника можно вырезать параллелограмм, три вершины которого совпадают с тремя вершинами этого четырехугольника?
Прислать комментарий     Решение


Задача 107699

Темы:   [ Неравенство треугольника (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 2+
Классы: 6,7,8

Петя купил "Конструктор", в котором было 100 палочек разной длины. В инструкции к "Конструктору" написано, что из любых трёх палочек "Конструктора" можно составить треугольник. Петя решил проверить это утверждение, составляя из палочек треугольники. Палочки лежат в конструкторе по возрастанию длин. Какое наименьшее число проверок (в самом плохом случае) надо сделать Пете, чтобы доказать или опровергнуть утверждение инструкции?
Прислать комментарий     Решение


Задача 32023

Темы:   [ Арифметическая прогрессия ]
[ Принцип крайнего (прочее) ]
Сложность: 3-
Классы: 7,8,9

а) Дано шесть натуральных чисел. Все они различны и дают в сумме 22. Найти эти числа и доказать, что других нет.

б) Тот же вопрос про 100 чисел, дающих в сумме 5051.
Прислать комментарий     Решение


Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .