Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 490]
|
|
|
Сложность: 5 Классы: 9,10,11
|
Внутри круга расположены точки A1, A2, ..., An, а на его границе – точки B1, B2, ..., Bn так, что отрезки A1B1, A2B2, ..., AnBn не пересекаются. Кузнечик может перепрыгнуть из точки Ai в точку Aj, если отрезок AiAj не пересекается ни с одним из отрезков AkBk, k ≠ i, j.
Докажите, что за несколько прыжков кузнечик сможет попасть из каждой точки Ap в любую точку Aq.
На плоскости дано конечное число точек, причем
любая прямая, проходящая через две из данных точек,
содержит еще одну данную точку. Докажите, что все данные
точки лежат на одной прямой (Сильвестр).
|
|
|
Сложность: 5+ Классы: 8,9,10,11
|
Докажите, что три выпуклых многоугольника на плоскости нельзя пересечь одной
прямой тогда и только тогда, когда каждый многоугольник можно отделить от
двух других прямой (т.е. существует прямая такая, что этот многоугольник и
два остальных лежат по ее разные стороны).
|
|
|
Сложность: 5+ Классы: 8,9,10,11
|
Озеро имеет форму невыпуклого
n-угольника. Докажите, что множество точек озера, из которых видны все его берега, либо пусто, либо заполняет внутренность выпуклого
m-угольника, где
m≤n.
|
|
|
Сложность: 5+ Классы: 9,10,11
|
На плоскости даны точки
A1 ,
A2 ,
An и точки
B1 ,
B2 ,
Bn . Докажите, что точки
Bi можно
перенумеровать так, что для всех
i
j
угол между векторами
и
– острый или прямой.
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 490]