Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 158]
|
|
Сложность: 3 Классы: 7,8,9
|
Квадрат
4×4 разделён на 16 клеток. Раскрасьте эти клетки в
чёрный и белый цвета так, чтобы у каждой чёрной клетки было три белых соседа, а
у каждой белой клетки был ровно один чёрный сосед. (Соседними считаются клетки,
имеющие общую сторону.)
|
|
Сложность: 3 Классы: 7,8,9
|
Белая плоскость произвольным образом забрызгана чёрной тушью. Доказать, что для
любого положительного
l существует отрезок длины
l, у которого оба конца
одного цвета.
|
|
Сложность: 3+ Классы: 7,8,9,10
|
На плоскости нарисовано некоторое количество равносторонних треугольников. Они не пересекаются, но могут иметь общие участки сторон. Мы хотим покрасить каждый треугольник в какой-нибудь цвет так, чтобы те из них, которые соприкасаются, были покрашены в разные цвета (треугольники, имеющие одну общую точку, могут быть покрашены в один цвет). Хватит ли для такой раскраски двух цветов?
а) Каждые две из шести ЭВМ соединены своим проводом. Укажите, как раскрасить каждый из этих проводов в один из пяти цветов так, чтобы из каждой ЭВМ выходило
пять проводов разного цвета.
б) Каждые две из девяти ЭВМ соединены своим проводом. Можно ли раскрасить каждый из этих проводов в один из восьми цветов так, чтобы из каждой ЭВМ выходило восемь
проводов разного цвета?
|
|
Сложность: 3+ Классы: 7,8,9
|
Бесконечная клетчатая доска раскрашена в три цвета (каждая клеточка – в один из цветов).
Докажите, что найдутся четыре клеточки одного цвета, расположенные в вершинах
прямоугольника со сторонами, параллельными стороне одной клеточки.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 158]