ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутри правильного шестиугольника со стороной 1 расположено 7 точек. Докажите, что среди них найдутся две точки на расстоянии не больше 1.

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 88]      



Задача 110793

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Подобные фигуры ]
[ Шестиугольники ]
Сложность: 5-
Классы: 9,10

В невыпуклом шестиугольнике каждый угол равен либо 90, либо 270 градусов. Верно ли, что при некоторых длинах сторон его можно разрезать на два подобных ему и неравных между собой шестиугольника?
Прислать комментарий     Решение


Задача 67109

Темы:   [ Сфера, вписанная в пирамиду ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Шестиугольники ]
[ Теорема Паскаля ]
Сложность: 5
Классы: 10,11

Пусть $OABCDEF$ – шестигранная пирамида с основанием $ABCDEF$, описанная около сферы $\omega$. Плоскость, проходящая через точки касания $\omega$ с гранями $OFA$, $OAB$ и $ABCDEF$, пересекает ребро $OA$ в точке $A_1$; аналогично определяются точки $B_1$, $C_1$, $D_1$, $E_1$ и $F_1$. Пусть $\ell$, $m$ и $n$ – прямые $A_1D_1$, $B_1E_1$ и $C_1F_1$ соответственно. Оказалось, что $\ell$ и $m$ лежат в одной плоскости, $m$ и $n$ также лежат в одной плоскости. Докажите, что $\ell$ и $n$ лежат в одной плоскости.
Прислать комментарий     Решение


Задача 79424

Темы:   [ Правильные многоугольники ]
[ Отрезок внутри треугольника меньше наибольшей стороны ]
[ Шестиугольники ]
[ Вспомогательная окружность ]
Сложность: 5
Классы: 9,10,11

Внутри правильного шестиугольника находится другой правильный шестиугольник с вдвое меньшей стороной.
Доказать, что центр большого шестиугольника лежит внутри малого шестиугольника.

Прислать комментарий     Решение

Задача 56729

 [Теорема Брианшона]
Темы:   [ Радикальная ось ]
[ Вписанные и описанные многоугольники ]
[ Шестиугольники ]
Сложность: 6
Классы: 8,9,10

Докажите, что диагонали AD, BE и CF описанного шестиугольника ABCDEF пересекаются в одной точке (Брианшон).
Прислать комментарий     Решение


Задача 34875

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Отрезок внутри треугольника меньше наибольшей стороны ]
[ Правильные многоугольники ]
[ Шестиугольники ]
Сложность: 2+
Классы: 7,8,9

Внутри правильного шестиугольника со стороной 1 расположено 7 точек. Докажите, что среди них найдутся две точки на расстоянии не больше 1.

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 88]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .