Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 23 задачи
Версия для печати
Убрать все задачи

Докажите, что не существует многогранника, у которого было бы ровно семь рёбер.

Вниз   Решение


На плоскости даны три попарно пересекающиеся окружности, центры которых не лежат на одной прямой.
Докажите, что прямые, содержащие три общие хорды каждой пары этих окружностей пересекаются в одной точке.

ВверхВниз   Решение


На боковых сторонах $AB$ и $BC$ равнобедренного треугольника $ABC$ отмечены точки $D$ и $E$ так, что $\angle BED = 3\angle BDE$. Точка $D'$ симметрична точке $D$ относительно прямой $AC$. Докажите, что прямая $D'E$ проходит через точку пересечения биссектрис треугольника $ABC$.

ВверхВниз   Решение


Выпуклый многогранник с вершинами в серединах ребер некоторого куба называется кубооктаэдром. В сечении кубооктаэдра плоскостью получился правильный многоугольник. Какое наибольшее число сторон он может иметь?

ВверхВниз   Решение


Две окружности радиусов 3 и 4, расстояние между центрами которых равно 5, пересекаются в точках A и B. Через точку B проведена прямая, пересекающая окружности в точках C и D, причём CD = 8 и точка B лежит между точками C и D. Найдите площадь треугольника ACD.

ВверхВниз   Решение


В равнобедренный прямоугольный треугольник вписан прямоугольник так, что две его вершины находятся на гипотенузе, а две другие — на катетах. Найдите стороны прямоугольника, если известно, что они относятся как 5:2, а гипотенуза треугольника равна 45.

ВверхВниз   Решение


Некоторая прямая пересекает стороны A1A2, A2A3, ..., AnA1 (или их продолжения) многоугольника A1A2...An в точках M1, M2, ..., Mn соответственно.
Докажите, что  

ВверхВниз   Решение


Угол при вершине A ромба ABCD равен 20°. Точки M и N – основания перпендикуляров, опущенных из вершины B на стороны AD и CD.
Найдите углы треугольника BMN.

ВверхВниз   Решение


Сумма двух сторон прямоугольника равна 7 см, а сумма трёх его сторон равна 9,5 см. Найдите периметр прямоугольника.

ВверхВниз   Решение


Можно ли квадратный лист бумаги размером 2*2 сложить так, чтобы его можно было разрезать на 4 квадрата 1*1 одним взмахом ножницами?

ВверхВниз   Решение


Даны двадцать карточек. Каждая из цифр от нуля до девяти включительно написана на двух из этих карточек (на каждой карточке – только одна цифра). Можно ли расположить эти карточки в ряд так, чтобы нули стояли рядом, между единицами лежала ровно одна карточка, между двойками – две, и так далее до девяток, между которыми должно быть девять карточек?

ВверхВниз   Решение


На сторонах AD и CD параллелограмма ABCD взяты точки M и N так, что  MN || AC.  Докажите, что  SABM = SCBN.

ВверхВниз   Решение


В треугольнике ABC на стороне AC взята точка K, причём  AK = 1,  KC = 3,  а на стороне AB взята точка L, причём  AL : LB = 2 : 3.  Пусть Q – точка пересечения прямых BK и CL. Площадь треугольника AQC равна 1. Найдите высоту треугольника ABC, опущенную из вершины B.

ВверхВниз   Решение


Номер автомашины состоит из трёх букв русского алфавита (используется 30 букв) и трёх цифр: сначала идет буква, затем три цифры, а затем еще две буквы. Сколько существует различных номеров автомашин?

ВверхВниз   Решение


В круге радиуса R даны два взаимно перпендикулярных диаметра. Произвольная точка окружности спроектирована на эти диаметры. Найдите расстояние между проекциями точки.

ВверхВниз   Решение


Семь школьников решили за воскресенье обойти семь кинотеатров. Во всех них сеансы начинаются в 9.00, 10.40, 12.20, 14.00, 15.40, 17.20, 19.00 и 20.40 (8 сеансов). На каждый сеанс шестеро шли вместе, а кто-нибудь один (не обязательно один и тот же) шел в другой кинотеатр. К вечеру каждый побывал в каждом кинотеатре. Докажите, что в каждом кинотеатре был сеанс, на котором не был ни один из этих школьников.

ВверхВниз   Решение


n – натуральное число. Докажите, что  2n ≥ 2n.

ВверхВниз   Решение


Докажите, что если в выпуклом четырёхугольнике ABCD имеет место неравенство AB $ \geqslant$ AC, то BD > DC.

ВверхВниз   Решение


Пусть H - точка пересечения высот в треугольнике ABC. Докажите, что если провести прямые, симметричные прямым AH, BH, CH относительно биссектрис углов A, B, C, то эти прямые пересекутся в центре O описанной окружности треугольника ABC.

ВверхВниз   Решение


Точка M расположена на стороне CD квадрата ABCD с центром O, причём  CM : MD = 1 : 2.
Найдите стороны треугольника AOM, если сторона квадрата равна 6.

ВверхВниз   Решение


Перпендикуляр, опущенный из вершины прямоугольника на диагональ, делит прямой угол на две части в отношении  1 : 3.
Найдите угол между этим перпендикуляром и другой диагональю.

ВверхВниз   Решение


Основанием пирамиды PQRS является прямоугольный треугольник PQR , в котором гипотенуза QR равна 2 и катет PQ равен 1. Рёбра PS , QS , RS равны между собой. Сфера радиуса касается ребра RS , продолжений рёбер PS , QS за точку S и плоскости PQR . Найдите отрезок касательной, проведённой к сфере из точки Q .

ВверхВниз   Решение


Какое из чисел больше: 3111 или 1714?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 590]      



Задача 30863

Тема:   [ Неравенство Коши ]
Сложность: 2+
Классы: 7

Докажите, что  2(x² + y²) ≥ (x + y)²  при любых x и y.

Прислать комментарий     Решение

Задача 30864

Тема:   [ Неравенство Коши ]
Сложность: 2+
Классы: 7,8

Докажите, что     при x, y > 0.

Прислать комментарий     Решение

Задача 30902

Темы:   [ Алгебраические неравенства (прочее) ]
[ Индукция (прочее) ]
[ Разложение на множители ]
Сложность: 2+
Классы: 7,8

n – натуральное число. Докажите, что  2n ≥ 2n.

Прислать комментарий     Решение

Задача 34935

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Показательные неравенства ]
Сложность: 2+
Классы: 7,8,9

Какое из чисел больше: 3111 или 1714?

Прислать комментарий     Решение

Задача 35385

Темы:   [ Линейные неравенства и системы неравенств ]
[ Математическая логика (прочее) ]
Сложность: 2+
Классы: 7,8

Число x натуральное. Среди утверждений   1)  2x > 70,   2)  x > 100,   3)  3x > 25,   4)   x ≥ 10,   5)  x > 5   три неверных и два верных. Чему равно x?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .