ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Деревянный куб покрасили снаружи белой краской, каждое его ребро разделили на 5 равных частей, после чего куб распилили так, что получились маленькие кубики, у которых ребро в 5 раз меньше, чем у исходного куба. Сколько получилось маленьких кубиков, у которых окрашена хотя бы одна грань?

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 1341]      



Задача 35726

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 8,9,10

Можно ли из квадрата со стороной 10 см вырезать несколько кругов, сумма диаметров которых больше 5 м?
Прислать комментарий     Решение


Задача 103849

Темы:   [ Раскраски ]
[ Таблицы и турниры (прочее) ]
Сложность: 2+
Классы: 7,8

В квадрате 7×7 клеток закрасьте некоторые клетки так, чтобы в каждой строке и в каждом столбце оказалось ровно по три закрашенных клетки.

Прислать комментарий     Решение

Задача 104002

Тема:   [ Разные задачи на разрезания ]
Сложность: 2+
Классы: 7,8,9

Когда Кай справился с этим заданием, Королева дала ему другую ледяную пластинку (см. рисунок). Как разрезать ее на две равные части?


Прислать комментарий     Решение

Задача 35039

Тема:   [ Раскраски ]
Сложность: 2+
Классы: 7,8,9

Деревянный куб покрасили снаружи белой краской, каждое его ребро разделили на 5 равных частей, после чего куб распилили так, что получились маленькие кубики, у которых ребро в 5 раз меньше, чем у исходного куба. Сколько получилось маленьких кубиков, у которых окрашена хотя бы одна грань?
Прислать комментарий     Решение


Задача 35357

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Куб ]
Сложность: 2+
Классы: 7,8

Какое максимальное количество фигурок 2*2*1 можно уложить в куб 3*3*3?
Прислать комментарий     Решение


Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 1341]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .