ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что если прямая Эйлера проходит через
центр вписанной окружности треугольника, то треугольник равнобедренный.
Имеется пирог некоторой формы. Докажите, что его можно разрезать на четыре равные по массе части двумя прямолинейными перпендикулярными разрезами. |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 51]
Назовем медианой системы 2 n точек плоскости прямую, проходящую ровно через две из них, по обе стороны от которой точек этой системы поровну. Какое наименьшее количество медиан может быть у системы из 2 n точек, никакие три из которых не лежат на одной прямой?
Рассматривается произвольный многоугольник (не обязательно выпуклый).
Два многочлена P(x) = x4 + ax³ + bx² + cx + d и Q(x) = x² + px + q принимают отрицательные значения на некотором интервале I длины более 2, а вне I – неотрицательны. Докажите, что найдётся такая точка x0, что P(x0) < Q(x0).
В бесконечной последовательности a1, a2, a3, ... число a1 равно 1,
а каждое следующее число an строится из предыдущего an–1 по правилу: если у числа n наибольший нечётный делитель имеет остаток 1 от деления на 4, то an = an–1 + 1, если же остаток равен 3, то an = an–1 – 1. Докажите, что в этой последовательности
Имеется пирог некоторой формы. Докажите, что его можно разрезать на четыре равные по массе части двумя прямолинейными перпендикулярными разрезами.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 51]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке