|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В прямоугольном треугольнике ABC с острым углом A, равным 30°, проведена биссектриса BD другого острого угла. На доске написано число 12. В течение каждой минуты число либо умножают, либо делят либо на 2, либо на 3, и результат записывают на доску вместо исходного числа. Докажите, что число, которое будет написано на доске ровно через час, не будет равно 54. Даны прямая l, окружность и точки M, N, лежащие на окружности и не лежащие на прямой l. Рассмотрим отображение P прямой l на себя, являющееся композицией проектирования прямой l на данную окружность из точки M и проектирования окружности на прямую l из точки N. (Если точка X лежит на прямой l, то P(X) есть пересечение прямой NY с прямой l, где Y — отличная от M точка пересечения прямой MX с данной окружностью.) Докажите, что преобразование P проективно. Из 16 спичек сложен ромб со стороной в две спички, разбитый на треугольники со стороной в одну спичку (см. рисунок). Какое максимальное количество фигурок 2*2*1 можно уложить в куб 3*3*3? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 75]
В вершинах куба расставлены цифры 1, 2, ..., 8. Докажите, что есть ребро, цифры на концах которого отличаются не менее чем на 3.
Из 16 спичек сложен ромб со стороной в две спички, разбитый на треугольники со стороной в одну спичку (см. рисунок).
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 75] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|