ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 75]      



Задача 116183

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Покрытия ]
[ Осевая и скользящая симметрии (прочее) ]
[ Композиции симметрий ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 9,10

На плоскости расположен круг. Какое наименьшее количество прямых надо провести, чтобы, симметрично отражая данный круг относительно этих прямых (в любом порядке конечное количество раз), можно было накрыть им любую заданную точку плоскости?

Прислать комментарий     Решение

Задача 66791

Тема:   [ Комбинаторная геометрия (прочее) ]
Сложность: 6
Классы: 10,11

На плоскости даны две замкнутые ломаные $a,b$ (возможно, самопересекающиеся) и точки $K$, $L$, $M$, $N$. Вершины ломаных и эти точки находятся в общем положении (т.е. никакие три из них не лежат на прямой и никакие три отрезка, их соединяющие, не имеют общей внутренней точки). Каждый из отрезков $KL$ и $MN$ пересекает ломаную $a$ в четном количестве точек, а каждый из отрезков $LM$ и $NK$ – в нечетном. Ломаная $b$, наоборот, пересекает каждый из отрезков $KL$ и $MN$ в нечетном количестве точек, а каждый из отрезков $LM$ и $NK$ – в четном. Докажите, что ломаные $a$ и $b$ пересекаются.
Прислать комментарий     Решение


Задача 66839

Тема:   [ Комбинаторная геометрия (прочее) ]
Сложность: 6
Классы: 8,9,10,11

Куб, состоящий из $(2n)^3$ единичных кубиков, проткнут несколькими спицами, параллельными рёбрам куба. Каждая спица протыкает ровно 2n кубиков, каждый кубик проткнут хотя бы одной спицей.
а) Докажите, что можно выбрать такие $2n^2$ спиц, идущих в совокупности всего в одном или двух направлениях, что никакие две из этих спиц не протыкают один и тот же кубик.
б) Какое наибольшее количество спиц можно гарантированно выбрать из имеющихся так, чтобы никакие две выбранные спицы не протыкали один и тот же кубик?
Прислать комментарий     Решение


Задача 35765

Темы:   [ Степень вершины ]
[ Комбинаторная геометрия (прочее) ]
[ Остовы многогранных фигур ]
Сложность: 2+
Классы: 8,9

Докажите, что не существует многогранника, у которого было бы ровно семь рёбер.

Прислать комментарий     Решение

Задача 60382

Темы:   [ Сочетания и размещения ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 2+
Классы: 8,9

На плоскости дано n прямых общего положения. Чему равно число образованных ими треугольников?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 75]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .