ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Некто расставил в произвольном порядке 10-томное собрание сочинений. Назовём беспорядком пару томов, для которых том с большим номером стоит левее. Для данной расстановки томов посчитано число S всех беспорядков. Какие значения может принимать S?

   Решение

Задачи

Страница: << 157 158 159 160 161 162 163 >> [Всего задач: 1006]      



Задача 35561

Темы:   [ Отношение порядка ]
[ Соображения непрерывности ]
[ Перестановки и подстановки (прочее) ]
Сложность: 3+
Классы: 9,10

Некто расставил в произвольном порядке 10-томное собрание сочинений. Назовём беспорядком пару томов, для которых том с большим номером стоит левее. Для данной расстановки томов посчитано число S всех беспорядков. Какие значения может принимать S?

Прислать комментарий     Решение

Задача 60537

Темы:   [ Количество и сумма делителей числа ]
[ Геометрическая прогрессия ]
[ Правило произведения ]
Сложность: 3+
Классы: 8,9,10

Пусть τ(n) – количество положительных делителей натурального числа  n = ,  а σ(n)  – их сумма. Докажите равенства:
  а)  τ(n) = (α1 + 1)...(αs + 1);   б)  σ(n) = ·...·.

Прислать комментарий     Решение

Задача 60593

 [Фибоначчиевы коэффициенты]
Темы:   [ Числа Фибоначчи ]
[ Рекуррентные соотношения (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 9,10,11

              1              
            1   1            
          1   1   1          
        1   2   2   1        
      1   3   6   3   1      
    1   5   15   15   5   1    
  1   8   40   60   40   8   1  
1   13   104   260   260   104   13   1

Данная таблица аналогична треугольнику Паскаля и состоит из фибоначчиевых коэффициентов     определяемых равенством

  а) Докажите, что фибоначчиевы коэффициенты обладают свойством симметрии  

  б) Найдите формулу, которая выражает коэффициент     через     и     (аналогичную равенству б) из задачи 60413).

  в) Объясните, почему все фибоначчиевы коэффициенты являются целыми числами.

Прислать комментарий     Решение

Задача 60632

Темы:   [ Четность и нечетность ]
[ Обход графов ]
[ Степень вершины ]
Сложность: 3+
Классы: 8,9,10

Город имеет форму квадрата 5×5:

Какую наименьшую длину может иметь маршрут, если нужно пройти по каждой улице этого города и вернуться в прежнее место? (По каждой улице можно проходить любое число раз.)

Прислать комментарий     Решение

Задача 61477

Темы:   [ Квадратные корни (прочее) ]
[ Десятичные дроби ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 10,11

Найдите у чисел   а)  (6 + )1999;   б)  (6 + )1999;   в)  (6 + )2000   первые 1000 знаков после запятой.

Прислать комментарий     Решение

Страница: << 157 158 159 160 161 162 163 >> [Всего задач: 1006]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .