Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 126]
Все точки окружности окрашены произвольным образом в два цвета.
Докажите, что найдётся равнобедренный треугольник с вершинами одного цвета, вписанный в эту окружность.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Какое наименьшее количество квадратиков 1×1 надо нарисовать, чтобы получилось изображение квадрата 25×25, разделённого на 625 квадратиков 1×1?
|
|
Сложность: 3+ Классы: 9,10,11
|
Какое максимальное число дамок можно поставить на чёрных полях шахматной доски
размером 8×8 так, чтобы каждую дамку била хотя бы одна из остальных?
|
|
Сложность: 3+ Классы: 8,9,10
|
Над квадратным катком нужно повесить четыре лампы так, чтобы они его полностью
освещали. На какой наименьшей высоте нужно повесить лампы, если каждая лампа
освещает круг радиуса, равного высоте, на которой она висит?
|
|
Сложность: 3+ Классы: 10,11
|
На поверхности правильного тетраэдра с ребром 1 отмечены девять точек.
Докажите, что среди этих точек найдутся две, расстояние между которыми (в пространстве) не превосходит 0,5.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 126]