ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Вершина A остроугольного треугольника ABC
соединена отрезком с центром O описанной окружности. Из вершины A
проведена высота AH. Докажите, что
Даны (2n - 1)-угольник
A1...A2n - 1 и точка O.
Прямые AkO и
An + k - 1An + k пересекаются в точке Bk.
Докажите, что произведение отношений
An + k - 1Bk/An + kBk(k = 1,..., n) равно 1.
Среди 40 кувшинов, с которыми атаман разбойников приехал в гости к Али-Бабе, нашлись два кувшина разной формы и два кувшина разного цвета. Докажите, что среди них найдутся два кувшина одновременно и разной формы и разного цвета. AA1 и BB1 – высоты остроугольного треугольника ABC. Докажите, что: |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 60]
В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Докажите, что A1C·BC = B1C·AC.
Пусть AA1 и BB1 – высоты треугольника ABC. Докажите, что треугольники A1B1C и ABC подобны. Чему равен коэффициент подобия?
В треугольнике ABC проведены высоты BB1 и CC1. Докажите, что
AA1 и BB1 – высоты остроугольного треугольника ABC. Докажите, что:
Сторона треугольника равна
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 60]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке