Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Точки K и P симметричны основанию H высоты BH треугольника ABC относительно его сторон AB и BC.
Докажите, что точки пересечения отрезка KP со сторонами AB и BC (или их продолжениями) – основания высот треугольника ABC.

Вниз   Решение


В каждой клетке шахматной доски стоит оловянный солдатик. Все 64 солдатика разной величины. Среди каждых восьми солдатиков, составляющих горизонтальный ряд, выбирают самого большого. После этого из отобранных восьми больших солдатиков выбирают самого маленького. Затем среди каждых восьми солдатиков, составляющих вертикальный ряд, выбирают самого маленького. После этого из отобранных восьми маленьких солдатиков выбирают самого большого. Какой солдатик больше: самый маленький из больших или самый большой из маленьких?

ВверхВниз   Решение


Из точки P, расположенной внутри острого угла BAC, опущены перпендикуляры PC1 и PB1 на прямые AB и AC. Докажите, что  ∠C1AP = ∠C1B1P.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 289]      



Задача 108943

Темы:   [ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вписанный угол равен половине центрального ]
Сложность: 3
Классы: 8,9

В остроугольном треугольнике ABC проведены высоты AA1 и CC1 . На высоте AA1 выбрана точка D , для которой A1D=C1D . Точка E – середина стороны AC . Докажите, что точки A , C1 , D и E лежат на одной окружности.
Прислать комментарий     Решение


Задача 108944

Темы:   [ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вписанный угол равен половине центрального ]
Сложность: 3
Классы: 8,9

В остроугольном треугольнике ABC проведены высоты AA1 и BB1 . Точки K и M – середины отрезков AB и A1B1 соответственно. Отрезки AA1 и KM пересекаются в точке L . Докажите, что точки A , K , L и B1 лежат на одной окружности.
Прислать комментарий     Решение


Задача 115499

Темы:   [ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

На стороне AB прямоугольника ABCD выбрана точка M . Через эту точку проведён перпендикуляр к прямой CM , который пересекает сторону  AD в точке  E . Точка P  — основание перпендикуляра, опущенного из точки  M на прямую  CE . Найдите угол  APB .
Прислать комментарий     Решение


Задача 52417

Темы:   [ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9

Из точки P, расположенной внутри острого угла BAC, опущены перпендикуляры PC1 и PB1 на прямые AB и AC. Докажите, что  ∠C1AP = ∠C1B1P.

Прислать комментарий     Решение

Задача 52848

Темы:   [ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Из произвольной точки M внутри острого угла с вершиной A опущены перпендикуляры MP и MQ на его стороны. Из вершины A проведён перпендикуляр AK на PQ. Докажите, что $ \angle$PAK = $ \angle$MAQ.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 289]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .