ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что из боковых граней четырёхугольной пирамиды, основанием которой служит параллелограмм, можно составить треугольную пирамиду, причём её объём вдвое меньше объёма исходной четырёхугольной пирамиды. Окружность, проходящая через вершины $B$ и $D$ четырехугольника $ABCD$, пересекает его стороны $AB$, $BC$, $CD$ и $DA$ в точках $K$, $L$, $M$ и $N$ соответственно. Окружность, проходящая через точки $K$ и $M$, пересекает прямую $AC$ в точках $P$ и $Q$. Докажите, что точки $L$, $N$, $P$ и $Q$ лежат на одной окружности. а) На сторонах BC, CA и AB треугольника ABC
(или на их продолжениях) взяты точки A1, B1 и C1, отличные
от вершин треугольника. Докажите, что описанные окружности
треугольников
AB1C1, A1BC1 и A1B1C пересекаются
в одной точке.
В треугольник, у которого основание равно 30, а высота – 10, вписан прямоугольный равнобедренный треугольник так, что его гипотенуза параллельна основанию данного треугольника, а вершина прямого угла лежит на этом основании. Найдите гипотенузу. Докажите, что площадь проекции куба с ребром 1 на любую плоскость численно равна длине его проекции на прямую, перпендикулярную этой плоскости. Докажите, что если четырёхугольник вписан в окружность, то сумма произведений длин двух пар его противоположных сторон равна произведению длин его диагоналей. Точки A, B, C лежат на прямой l, а точки A1, B1, C1 — на прямой l1. Докажите, что точки пересечения
прямых AB1 и BA1, BC1 и CB1, CA1 и AC1 лежат на
одной прямой (Папп).
Можно ли из какой-то точки плоскости провести к графику многочлена n-й степени больше чем n касательных?
Докажите, что прямая, проходящая через середины оснований трапеции, разбивает её на две равновеликие части.
Внутри треугольника ABC взята точка X. Прямые AX, BX и
CX пересекают стороны треугольника в точках A1, B1 и
C1. Докажите, что если описанные окружности треугольников
AB1C1, A1BC1 и A1B1C пересекаются в точке X, то
X — точка пересечения высот треугольника ABC.
На листе бумаги нарисован выпуклый многоугольник M периметра P и площади S. Закрасили каждый круг радиуса R с центром в каждой точке, лежащей внутри этого многоугольника. Найдите площадь закрашенной фигуры. Окружность разделена точками A, B, C, D так, что ⌣AB : ⌣ BC : ⌣ CD : ⌣ DA = 3 : 2 : 13 : 7. Хорды AD и BC продолжены до пересечения в точке M.
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 65]
Окружность разделена точками A, B, C, D так, что ⌣AB : ⌣BC : ⌣CD : ⌣DA = 2 : 3 : 5 : 6.
Проведены хорды AC и BD, пересекающиеся в точке M.
Окружность разделена точками A, B, C, D так, что ⌣AB : ⌣ BC : ⌣ CD : ⌣ DA = 3 : 2 : 13 : 7. Хорды AD и BC продолжены до пересечения в точке M.
На окружности даны точки A, B, C, D в указанном
порядке. M — середина дуги AB. Обозначим точки пересечения
хорд MC и MD с хордой AB через E и K. Докажите,
что KECD — вписанный четырехугольник.
а) Из точки A, лежащей вне окружности, выходят лучи AB и AC, пересекающие эту окружность. Докажите, что величина угла BAC равна полуразности угловых величин дуг окружности, заключенных внутри этого угла. б) Вершина угла BAC расположена внутри окружности. Докажите, что величина угла BAC равна полусумме угловых величин дуг окружности, заключенных внутри угла BAC и внутри угла, симметричного ему относительно вершины A.
Внутри данной окружности находится другая окружность. CAE и DBF - две хорды большей окружности (не пересекающиеся), касающиеся меньшей окружности в точках A и B;CND, EPF - дуги между концами хорд. Найдите угловую величину дуги CND, если дуги AMB и EPF содержат соответственно 154o и 70o.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 65]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке