Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 65]
|
|
Сложность: 4- Классы: 8,9,10,11
|
Биссектрисы углов $A$, $B$ и $C$ треугольника $ABC$ вторично пересекают описанную окружность в точках $A_1$, $B_1$, $C_1$ соответственно. Точки $A_2$, $B_2$; $C_2$ – середины отрезков $AA_1$, $BB_1$, $CC_1$ соответственно. Докажите, что треугольники $A_1B_1C_1$ и $A_2B_2C_2$ подобны.
Внутри остроугольного треугольника ABC дана точка P, причём
APB = ACB + 60o,
BPC = BAC + 60o,
CPA = CBA + 60o. Докажите, что точки пересечения
продолжений отрезков AP, BP и CP (за точку P) с описанной окружностью
треугольника ABC лежат в вершинах равностороннего треугольника.
В окружности с центром O проведён диаметр; A и B — точки
окружности, расположенные по одну сторону от этого диаметра. На
диаметре взята такая точка M, что AM и BM образуют равные углы с
диаметром. Докажите, что
AOB = AMB.
В окружность вписаны треугольники
T1 и
T2, причем
вершины треугольника
T2 являются серединами дуг, на
которые окружность разбивается вершинами треугольника
T1. Докажите,
что в шестиугольнике, являющемся пересечением треугольников
T1
и
T2, диагонали, соединяющие противоположные вершины, параллельны
сторонам треугольника
T1 и пересекаются в одной точке.
Дана фиксированная хорда MN окружности, не являющаяся диаметром. Для каждого диаметра AB этой окружности, не проходящего через точки M и N, рассмотрим точку C, в которой пересекаются прямые AM и BN, и проведём через неё прямую l, перпендикулярную AB.
Докажите, что все прямые l проходят через одну точку.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 65]