ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 65]      



Задача 67231

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Подобные треугольники (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Терешин А.

Биссектрисы углов $A$, $B$ и $C$ треугольника $ABC$ вторично пересекают описанную окружность в точках $A_1$, $B_1$, $C_1$ соответственно. Точки $A_2$, $B_2$; $C_2$ – середины отрезков $AA_1$, $BB_1$, $CC_1$ соответственно. Докажите, что треугольники $A_1B_1C_1$ и $A_2B_2C_2$ подобны.
Прислать комментарий     Решение


Задача 55529

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

Внутри остроугольного треугольника ABC дана точка P, причём $ \angle$APB = $ \angle$ACB + 60o, $ \angle$BPC = $ \angle$BAC + 60o, $ \angle$CPA = $ \angle$CBA + 60o. Докажите, что точки пересечения продолжений отрезков AP, BP и CP (за точку P) с описанной окружностью треугольника ABC лежат в вершинах равностороннего треугольника.

Прислать комментарий     Решение


Задача 53569

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 8,9

В окружности с центром O проведён диаметр; A и B — точки окружности, расположенные по одну сторону от этого диаметра. На диаметре взята такая точка M, что AM и BM образуют равные углы с диаметром. Докажите, что $ \angle$AOB = $ \angle$AMB.

Прислать комментарий     Решение


Задача 56561

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 4
Классы: 8

В окружность вписаны треугольники T1 и T2, причем вершины треугольника T2 являются серединами дуг, на которые окружность разбивается вершинами треугольника T1. Докажите, что в шестиугольнике, являющемся пересечением треугольников T1 и T2, диагонали, соединяющие противоположные вершины, параллельны сторонам треугольника T1 и пересекаются в одной точке.
Прислать комментарий     Решение


Задача 108052

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанный угол, опирающийся на диаметр ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4
Классы: 8,9

Автор: Куланин Е.

Дана фиксированная хорда MN окружности, не являющаяся диаметром. Для каждого диаметра AB этой окружности, не проходящего через точки M и N, рассмотрим точку C, в которой пересекаются прямые AM и BN, и проведём через неё прямую l, перпендикулярную AB. Докажите, что все прямые l проходят через одну точку.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 65]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .