|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Даны две окружности. Общая внешняя касательная касается их в точках A и B . Точки X , Y на окружностях таковы, что существует окружность, касающаяся данных в этих точках, причем одинаковым образом (внешним или внутренним). Найдите геометрическое место точек пересечения прямых AX и BY . Треугольники ABC и ADC имеют общую сторону AC; стороны AD и BC пересекаются в точке M. Углы B и D равны по 40°. Расстояние между вершинами D и B равно стороне AB, ∠AMC = 70°. Найдите углы треугольников ABC и ADC. |
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 240]
Из квадратного листа бумаги сложили треугольник (см. рисунки). Найдите отмеченный угол.
Треугольники ABC и ADC имеют общую сторону AC; стороны AD и BC пересекаются в точке M. Углы B и D равны по 40°. Расстояние между вершинами D и B равно стороне AB, ∠AMC = 70°. Найдите углы треугольников ABC и ADC.
Угол при вершине B равнобедренного треугольника ABC равен 108°. Перпендикуляр к биссектрисе AD этого треугольника, проходящий через точку D, пересекает сторону AC в точке E. Докажите, что DE = BD.
Найдите сумму внутренних углов:
В треугольнике ABC сторона AB равна 2, а углы A и B равны соответственно 60° и 70°. На стороне AC взята точка D, причём AD = 1.
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 240] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|