|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В основании четырёхугольной пирамиды SABCD лежит ромб ABCD с тупым углом при вершине A . Высота ромба равна 2, точка пересечения его диагоналей является ортогональной проекцией вершины S на плоскость основания. Сфера радиуса 1 касается плоскостей всех граней пирамиды. Найдите объём пирамиды, если расстояние от центра сферы до прямой BD равно |
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 240]
У треугольника ABC угол C – тупой. Докажите, что если точка X лежит на стороне AC, то BX < AB.
В треугольнике ABC найдите точку, из которой сторона AB видна под наименьшим углом.
В треугольнике известны сторона a и два прилежащих к ней угла β и γ. Найдите биссектрису, проведённую из вершины третьего угла.
На хорде AB окружности S с центром O взята
точка C. Описанная окружность треугольника AOC пересекает
окружность S в точке D.
Медиана AM треугольника ABC равна половине стороны BC. Угол между AM и высотой AH равен 40°. Найдите углы треугольника ABC.
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 240] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|