ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найти все равнобочные трапеции, которые разбиваются диагональю на два равнобедренных треугольника. Дан четырёхугольник; A, B, C, D — последовательные середины его сторон, P, Q — середины диагоналей. Доказать, что треугольник BCP равен треугольнику ADQ. Существует ли выпуклый четырёхугольник, каждая диагональ которого делит его на два остроугольных треугольника? Угол между сторонами AB и CD четырехугольника ABCD
равен Две окружности пересекаются в точках A и B. Точка X
лежит на прямой AB, но не на отрезке AB. Докажите,
что длины всех касательных, проведенных из точки X к окружностям,
равны.
Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника? Биссектриса внешнего угла при вершине C треугольника ABC
пересекает описанную окружность в точке D. Докажите, что AD = BD.
Пусть a и b — длины катетов прямоугольного
треугольника, c — длина его гипотенузы. Докажите, что:
В прямоугольнике диагональ образует со стороной угол в 20o. На какие четыре части делится вершинами этого прямоугольника описанная около него окружность?
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 331]
Попробуйте составить квадрат из набора палочек: 6 шт. по 1 см, 3 шт. по 2 см, 6 шт. по 3 см и 5 шт. по 4 см. Ломать палочки и накладывать одну на другую нельзя.
Биссектриса угла B и биссектриса внешнего угла D прямоугольника
ABCD пересекают сторону AD и прямую AB в точках M и
K соответственно.
В прямоугольнике диагональ образует со стороной угол в 20o. На какие четыре части делится вершинами этого прямоугольника описанная около него окружность?
ABCD – прямоугольник, M – середина стороны BC. Известно, что прямые MA и MD взаимно перпендикулярны и что периметр прямоугольника ABCD равен 24. Найдите его стороны.
Найдите сторону квадрата, вписанного в окружность радиуса 8.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 331]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке