ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Около окружности радиуса $ {\frac{2}{\sqrt{3}}}$ описана равнобедренная трапеция. Угол между диагоналями трапеции, опирающийся на основание, равен 2arctg$ {\frac{2}{\sqrt{3}}}$. Найдите отрезок, соединяющий точки касания окружности с большим основанием трапеции и одной из её боковых сторон.

   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 292]      



Задача 52653

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

В равнобедренную трапецию, периметр которой равен 8, а площадь 2, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.

Прислать комментарий     Решение


Задача 52654

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства касательной ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

Около окружности радиуса $ {\frac{2}{\sqrt{3}}}$ описана равнобедренная трапеция. Угол между диагоналями трапеции, опирающийся на основание, равен 2arctg$ {\frac{2}{\sqrt{3}}}$. Найдите отрезок, соединяющий точки касания окружности с большим основанием трапеции и одной из её боковых сторон.

Прислать комментарий     Решение


Задача 53080

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

В окружность вписана трапеция ABCD. Диаметр, проведённый через вершину A, перпендикулярен боковой стороне CD. Через вершину C проведён перпендикуляр к основанию AD, пересекающий отрезок AD в точке M, а окружность в точке N, причём CM : MN = 5 : 2. Найдите угол при основании трапеции.

Прислать комментарий     Решение


Задача 53093

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4
Классы: 8,9

Равнобедренная трапеция с основаниями AD и BC ( AD > BC ) описана около окружности, которая касается стороны CD в точке M . Отрезок AM пересекает окружность в точке N . Найдите отношение AD к BC , если AN:NM = k .
Прислать комментарий     Решение


Задача 53258

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

В трапецию ABCD вписана окружность. Продолжения боковых сторон трапеции AD и BC за точки D и C пересекаются в точке E. Периметр треугольника DCE и основание трапеции AB равны соответственно 60 и 20, угол ADC равен $ \beta$. Найдите радиус окружности.

Прислать комментарий     Решение


Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 292]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .