ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи С помощью циркуля и линейки проведите через данную точку прямую, отсекающую от данного угла треугольник заданного периметра. Решение |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 283]
На стороне треугольника взяты четыре точки K, P, H и M, являющиеся соответственно серединой этой стороны, основанием биссектрисы противоположного угла треугольника, точкой касания с этой стороной вписанной в треугольник окружности и основанием соответствующей высоты. Найдите KH, если KP = a, KM = b.
В треугольник ABC вписана окружность, касающаяся сторон AB, AC и BC в точках C1, B1 и A1 соответственно. Пусть K – точка на окружности, диаметрально противоположная точке C1, D – точка пересечения прямых B1C1 и A1K. Докажите, что CD = CB1.
С помощью циркуля и линейки проведите через данную точку прямую, отсекающую от данного угла треугольник заданного периметра.
Высота, опущенная из вершины прямого угла на гипотенузу, делит треугольник на два треугольника, в каждый из которых вписана окружность. Найдите углы и площадь треугольника, образованного катетами исходного треугольника и прямой, проходящей через центры этих окружностей, если высота исходного треугольника равна h.
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 283] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|