|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Используя проективные преобразования прямой, докажите теорему о полном четырехстороннике (задача 30.34). Пусть a, b, c, d, e и f – некоторые числа, причём ace ≠ 0. Известно, что значения выражений |ax + b| + |cx + d| и |ex + f | равны при всех значениях x. Окружность проходит через вершины B и C треугольника ABC и пересекает стороны AB и AC в точках D и E соответственно. Отрезки CD и BE пересекаются в точке O. Пусть M и N – центры окружностей, вписанных соответственно в треугольники ADE и ODE. Докажите, что середина меньшей дуги DE лежат на прямой MN. Даны две концентрические окружности и пересекающая их прямая. Докажите, что отрезки этой прямой, заключённые между между окружностями, равны.
|
Страница: 1 2 3 4 5 6 >> [Всего задач: 28]
Радиусы двух концентрических окружностей относятся как 7:4, а ширина кольца равна 12. Найдите радиус меньшей окружности.
Даны две концентрические окружности и пересекающая их прямая. Докажите, что отрезки этой прямой, заключённые между между окружностями, равны.
а) Где такое могло произойти? б) Найдите все такие точки на Земле.
Наименьшее расстояние между точками двух концентрических окружностей равно 2, а наибольшее равно 16. Найдите радиусы окружностей.
Страница: 1 2 3 4 5 6 >> [Всего задач: 28] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|