ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Вписанный угол
>>
Углы, опирающиеся на равные дуги и равные хорды
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В окружность вписан четырёхугольник MNPQ, диагонали которого взаимно перпендикулярны и пересекаются в точке F. Прямая, проходящая через точку F и середину стороны MN, пересекает сторону PQ в точке H. Докажите, что FH — высота треугольника PFQ и найдите её длину, если MN = 4, MQ = 7 и MPQ = . Решение |
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 499]
В окружность вписан четырёхугольник MNPQ, диагонали которого взаимно перпендикулярны и пересекаются в точке F. Прямая, проходящая через точку F и середину стороны MN, пересекает сторону PQ в точке H. Докажите, что FH — высота треугольника PFQ и найдите её длину, если MN = 4, MQ = 7 и MPQ = .
Три прямые проходят через точку O и образуют попарно углы в 60o. Из произвольной точки M, отличной от O, опущены перпендикуляры на эти прямые. Докажите, что основания перпендикуляров являются вершинами правильного треугольника.
В окружность вписан выпуклый шестиугольник ABCDEF.
В треугольнике ABC известно, что A = 60o, B = 45o. Продолжения высот треугольника ABC описанную около него окружность в точках M, N, P. Найдите отношение площадей треугольников ABC и MNP.
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 499] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|