ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольнике ABC на стороне AC как на диаметре описана окружность, которая пересекает сторону AB в точке M, а сторону BC в точке N. Известно, что AC = 2, AB = 3, AN = 1, 8. Найдите косинус угла BAC. Решение |
Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 448]
Две стороны треугольника равны 2 и 3, площадь треугольника равна 3. Найдите третью сторону.
В треугольнике ABC BC = 4, AB = 2 . Известно, что центр окружности, проходящей через середины сторон треугольника, лежит на биссектрисе угла C. Найдите AC.
В треугольнике ABC на стороне AC как на диаметре описана окружность, которая пересекает сторону AB в точке M, а сторону BC в точке N. Известно, что AC = 2, AB = 3, AN = 1, 8. Найдите косинус угла BAC.
Докажите, что сумма квадратов расстояний от точки, лежащей на окружности, до вершин правильного вписанного в эту окружность треугольника есть величина постоянная, не зависящая от положения точки на окружности.
В треугольнике ABC биссектриса AK перпендикулярна медиане
BM, а ∠B = 120°.
Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 448] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|