ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В четырёхугольнике ABCD сторона AB равна стороне BC, диагональ AC равна стороне CD, а $ \angle$ACB = $ \angle$ACD. Радиусы окружностей, вписанных в треугольники ACB и ACD, относятся как 3:4. Найдите отношение площадей этих треугольников.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 86]      



Задача 66828

Темы:   [ Симметрия помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4-
Классы: 8,9,10,11

Два остроугольных треугольника $ABC$ и $A_{1}B_{1}C_{1}$ таковы, что точки $B_{1}$ и $C_{1}$ лежат на стороне $BC$, а точка $A_{1}$ – внутри треугольника ABC. Пусть $S$ и $S_{1}$ – соответственно площади этих треугольников. Докажите, что  $\frac{S}{AB+AC} > \frac{S_1}{A_1B_1 + A_1C_1}$.

Прислать комментарий     Решение

Задача 108027

Темы:   [ Перегруппировка площадей ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4-
Классы: 8,9

Из точки M внутри треугольника опущены перпендикуляры на высоты. Оказалось, что отрезки высот от вершин до оснований этих перпендикуляров равны между собой. Докажите, что в этом случае они равны диаметру вписанной в треугольник окружности.

Прислать комментарий     Решение

Задача 52727

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4
Классы: 8,9

Докажите, что площадь треугольника можно выразить по формуле S = (p - a) ra , где ra — радиус вневписанной окружности, касающейся стороны, равной a , p — полупериметр треугольника.
Прислать комментарий     Решение


Задача 52990

Темы:   [ Вписанные и описанные окружности ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4
Классы: 8,9

В четырёхугольнике ABCD сторона AB равна стороне BC, диагональ AC равна стороне CD, а $ \angle$ACB = $ \angle$ACD. Радиусы окружностей, вписанных в треугольники ACB и ACD, относятся как 3:4. Найдите отношение площадей этих треугольников.

Прислать комментарий     Решение


Задача 67022

Темы:   [ Вписанные и описанные окружности ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 9,10,11

Два треугольника пересекаются по шестиугольнику, который отсекает от них 6 маленьких треугольников. Радиусы вписанных окружностей этих шести треугольников равны.
Докажите, что радиусы вписанных окружностей двух исходных треугольников также равны.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 86]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .