ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Две окружности радиусов R и r (R > r) касаются внешне в точке C. К ним проведена общая внешняя касательная AB, где A и B — точки касания. Найдите стороны треугольника ABC.

   Решение

Задачи

Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 769]      



Задача 53049

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 4
Классы: 8,9

Две окружности радиусов R и r (R > r) касаются внешне в точке C. К ним проведена общая внешняя касательная AB, где A и B — точки касания. Найдите стороны треугольника ABC.

Прислать комментарий     Решение


Задача 53050

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 4
Классы: 8,9

Две окружности радиусов R и r (R > r) касаются внешним образом. Найдите радиусы окружностей, касающихся обеих данных окружностей и их общей внешней касательной.

Прислать комментарий     Решение


Задача 53125

Темы:   [ Касающиеся окружности ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 8,9

Две окружности касаются внутренним образом в точке A. Из центра O большей окружности проведён радиус OB, касающийся меньшей окружности в точке C. Найдите $ \angle$BAC.

Прислать комментарий     Решение


Задача 53131

Темы:   [ Общая касательная к двум окружностям ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

В угол вписаны две окружности; у них есть общая внутренняя касательная T1T2 (T1 и T2 — точки касания), которая пересекает стороны угла в точках A1 и A2. Докажите, что A1T1 = A2T2 (или, что эквивалентно, A1T2 = A2T1).

Прислать комментарий     Решение


Задача 55496

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 4
Классы: 8,9

Две окружности касаются друг друга внешним образом. Четыре точки A, B, C и D касания их общих внешних касательных последовательно соединены. Докажите, что в четырёхугольник ABCD можно вписать окружность и найдите её радиус, если радиусы данных окружностей равны R и r.

Прислать комментарий     Решение


Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .