Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Циркулем и линейкой разбейте данный треугольник на два меньших треугольника с одинаковой суммой квадратов сторон.

Вниз   Решение


Высоты остроугольного треугольника ABC, проведённые из вершин B и C, равны 7 и 9, а медиана AM равна 8. Точки P и Q симметричны точке M относительно сторон AC и AB соответственно. Найдите периметр четырёхугольника APMQ.

ВверхВниз   Решение


Даны две параллельные прямые и секущая. С помощью циркуля и линейки постройте окружность, касающуюся всех трёх прямых.

ВверхВниз   Решение


В угол величины 2$ \alpha$ вписаны две касающиеся окружности. Найдите отношение радиуса меньшей окружности к радиусу третьей окружности, касающейся первых двух и одной из сторон угла.

ВверхВниз   Решение


Сфера, вписанная в пирамиду SABC, касается граней SAB, SBC, SCA в точках D, E, F соответственно.
Найдите все возможные значения суммы углов SDA, SEB и SFC.

ВверхВниз   Решение


Докажите, что любое натуральное число, десятичная запись которого состоит из 3n одинаковых цифр, делится на 37.

ВверхВниз   Решение


Две прямые проходят через точку M и касаются окружности в точках A и B. Проведя радиус OB, продолжают его за точку B на расстояние BC = OB. Докажите, что $ \angle$AMC = 3$ \angle$BMC.

ВверхВниз   Решение


Ваня задумал два положительных числа x и y. Он записал числа  x + y,  x – y,  xy и x/y и показал их Пете, но не сказал, какое число какой операцией получено. Докажите, что Петя сможет однозначно восстановить x и y.

ВверхВниз   Решение


В треугольнике KMN проведены высота NA, биссектриса NB и медиана NC, которые делят угол KNM на четыре равные части. Найдите длины высоты NA, биссектрисы NB и медианы NC, если радиус описанной около треугольника KMN окружности равен R.

ВверхВниз   Решение


В параллелограмме ABCD точка E – середина AD. Точка F – основание перпендикуляра, опущенного из B на прямую CE.
Докажите, что треугольник ABF – равнобедренный.

ВверхВниз   Решение


Две окружности радиусов R и r (R > r) касаются внешне в точке C. К ним проведена общая внешняя касательная AB, где A и B — точки касания. Найдите стороны треугольника ABC.

Вверх   Решение

Задачи

Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 772]      



Задача 52849

Темы:   [ Средняя линия трапеции ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 8,9

Окружность, построенная на основании AD трапеции ABCD как на диаметре, проходит через середины боковых сторон AB и CD трапеции и касается основания BC. Найдите углы трапеции.

Прислать комментарий     Решение


Задача 52993

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 4
Классы: 8,9

В угол величины 2$ \alpha$ вписаны две касающиеся окружности. Найдите отношение радиуса меньшей окружности к радиусу третьей окружности, касающейся первых двух и одной из сторон угла.

Прислать комментарий     Решение


Задача 53049

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 4
Классы: 8,9

Две окружности радиусов R и r (R > r) касаются внешне в точке C. К ним проведена общая внешняя касательная AB, где A и B — точки касания. Найдите стороны треугольника ABC.

Прислать комментарий     Решение


Задача 53050

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 4
Классы: 8,9

Две окружности радиусов R и r (R > r) касаются внешним образом. Найдите радиусы окружностей, касающихся обеих данных окружностей и их общей внешней касательной.

Прислать комментарий     Решение


Задача 53125

Темы:   [ Касающиеся окружности ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 8,9

Две окружности касаются внутренним образом в точке A. Из центра O большей окружности проведён радиус OB, касающийся меньшей окружности в точке C. Найдите $ \angle$BAC.

Прислать комментарий     Решение


Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 772]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .