Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Докажите, что при гомотетии окружность переходит в окружность.

Вниз   Решение


Можно ли разложить на множители с целыми коэффициентами многочлен  x4 + x3 + x2 + x + 12?

ВверхВниз   Решение


Докажите, что если фигура имеет две перпендикулярные оси симметрии, то она имеет центр симметрии.

ВверхВниз   Решение


Докажите, что окружность при осевой симметрии переходит в окружность.

ВверхВниз   Решение


Дан квадрат ABCD, M и N – середины сторон BC и AD. На продолжении диагонали AC за точку A взяли точку K. Отрезок KM пересекает сторону AB
в точке L. Докажите, что углы KNA и LNA равны.

ВверхВниз   Решение


Докажите, что точки, симметричные произвольной точке относительно середин сторон квадрата, являются вершинами некоторого квадрата.

ВверхВниз   Решение


а) Дано шесть натуральных чисел. Все они различны и дают в сумме 22. Найти эти числа и доказать, что других нет.

б) Тот же вопрос про 100 чисел, дающих в сумме 5051.

ВверхВниз   Решение


Окружность, построенная на основании BC трапеции ABCD как на диаметре, проходит через середины диагоналей AC и BD трапеции и касается основания AD. Найдите углы трапеции.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 167]      



Задача 116284

Темы:   [ Трапеции (прочее) ]
[ Угол между касательной и хордой ]
[ Инверсия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 5-
Классы: 9,10,11

Автор: Ивлев Ф.

Боковые стороны AB и CD трапеции ABCD являются соответственно хордами окружностей ω1 и ω2, касающихся друг друга внешним образом. Градусные меры касающихся дуг AB и CD равны α и β. Окружности ω3 и ω4 также имеют хорды AB и CD соответственно. Их дуги AB и CD, расположенные с той же стороны от хорд, что соответствующие дуги первых двух окружностей, имеют градусные меры β и α. Докажите, что ω3 и ω4 тоже касаются.

Прислать комментарий     Решение

Задача 54700

Темы:   [ Теорема косинусов ]
[ Трапеции (прочее) ]
Сложность: 2+
Классы: 8,9

Угол при вершине D трапеции ABCD с основаниями AD и BC равен 60o. Найдите диагонали трапеции, если AD = 10, BC = 3 и CD = 4.

Прислать комментарий     Решение


Задача 53743

Темы:   [ Признаки подобия ]
[ Трапеции (прочее) ]
Сложность: 3-
Классы: 8,9

Основания трапеции равны 1,8 и 1,2; боковые стороны, равные 1,5 и 1,2, продолжены до взаимного пересечения.
Найдите, насколько продолжены боковые стороны.

Прислать комментарий     Решение

Задача 53882

Темы:   [ Подобные треугольники (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3-
Классы: 8,9

Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке E. Найдите стороны треугольника AED, если  AB = 3,  BC = 10,  CD = 4,  AD = 12.

Прислать комментарий     Решение

Задача 53072

Темы:   [ Прямые, касающиеся окружностей (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 8,9

Окружность, построенная на основании BC трапеции ABCD как на диаметре, проходит через середины диагоналей AC и BD трапеции и касается основания AD. Найдите углы трапеции.

Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 167]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .