ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Диаметр, хорды и секущие
>>
Диаметр, основные свойства
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В равнобедренной трапеции с острым углом α при основании окружность, построенная на боковой стороне как на диаметре, касается другой боковой стороны.
|
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 105]
Диагонали вписанного четырёхугольника взаимно перпендикулярны. Докажите, что расстояние от точки пересечения диагоналей до центра описанной окружности равно расстоянию между серединами диагоналей.
Точка P удалена на расстояние, равное 7, от центра окружности, радиус которой равен 11. Через точку P проведена хорда, равная 18. Найдите отрезки, на которые делится хорда точкой P?
Сторона AB правильного шестиугольника ABCDEF равна и является хордой некоторой окружности, причём остальные стороны шестиугольника лежат вне этой окружности. Длина касательной CM, проведённой к той же окружности из вершины C, равна 3. Найдите диаметр окружности.
Окружность с центром в вершине прямого угла прямоугольного треугольника радиуса, равного меньшему катету, делит гипотенузу на отрезки в 98 и 527 (начиная от меньшего катета). Найдите катеты.
В равнобедренной трапеции с острым углом α при основании окружность, построенная на боковой стороне как на диаметре, касается другой боковой стороны.
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 105] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|