ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 105]
Точки C и D лежат на окружности с диаметром AB и отличны от A и B. Прямые AC и BD пересекаются в точке P, а прямые AD и BC — в точке Q. Докажите, что AB перпендикулярно PQ.
AB — диаметр окружности, CD — хорда этой окружности. Перпендикуляры к хорде, проведённые через её концы C и D, пересекают прямую AB в точках K и M соответственно. Докажите, что AK = BM.
Основание CD, диагональ BD и боковая сторона AD трапеции ABCD равны p. Боковая сторона BC равна q. Найдите диагональ AC.
Подобные прямоугольные треугольники ABC и A'B'A с прямыми углами при вершинах B и B' расположены на плоскости так, что точка A' лежит на луче BC за точкой C . Докажите, что центр окружности, описанной около треугольника A'AC , лежит на прямой A'B' .
В остроугольном треугольнике ABC проведены высоты BD и CE. Из вершин B и C на прямую ED опущены перпендикуляры BF и CG. Докажите, что EF = DG.
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 105]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке