ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Две окружности с центрами M и N, лежащими на стороне AB
треугольника ABC, касаются друг друга и пересекают стороны AC и
BC в точках A, P и B, Q соответственно. Причем
AM = PM = 2, BN = = QN = 5. Найдите радиус описанной около треугольника ABC
окружности, если известно, что отношение площади треугольника AQN
к площади треугольника MPB равно
15
Найдите диагональ прямоугольника со сторонами 5 и 12. Биссектрисы, проведённые из вершин A и B треугольника ABC, пересекаются в точке D. Найдите угол ADB, если: Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами. Величины углов при вершинах A, B, C треугольника ABC составляют арифметическую прогрессию с разностью π/7. Биссектрисы этого треугольника пересекаются в точке D. Точки A1, B1, C1 находятся на продолжениях отрезков DA, DB, DC за точки A, B, C соответственно, на одинаковом расстоянии от точки D. Докажите, что величины углов A1, B1, C1 также образуют арифметическую прогрессию. Найдите её разность.
В окружность вписан равнобедренный треугольник с основанием
a и углом при основании
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 5267]
В окружность вписан равнобедренный треугольник с основанием
a и углом при основании
Две окружности с центрами M и N, лежащими на стороне AB
треугольника ABC, касаются друг друга и пересекают стороны AC и
BC в точках A, P и B, Q соответственно. Причем
AM = PM = 2, BN = = QN = 5. Найдите радиус описанной около треугольника ABC
окружности, если известно, что отношение площади треугольника AQN
к площади треугольника MPB равно
15
а) Докажите, что если в треугольнике медиана совпадает
с высотой, то этот треугольник равнобедренный.
Докажите, что биссектрисы треугольника пересекаются
в одной точке.
На высоте AH треугольника ABC взята точка M. Докажите, что AB² – AC² = MB² – MC².
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 5267]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке