Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Даны n точек  A1,..., An и окружность радиуса 1. Докажите, что на окружности можно выбрать точку M так, что  MA1 + ... + MAn $ \geq$ n.

Вниз   Решение


Автор: Л.Г.Макаров

Какое множество точек заполняют центры тяжести треугольников, три вершины которых лежат соответственно на трёх сторонах АВ, ВС и АС данного треугольника АВС?

ВверхВниз   Решение


Докажите, что центр масс точек A и B с массами a и b лежит на отрезке AB и делит его в отношении b : a.

ВверхВниз   Решение


Рассмотрим шахматную доску n×n. Требуется провести ладью из левого нижнего угла в правый верхний. Двигаться можно только вверх и вправо, не заходя при этом на клетки главной диагонали и ниже нее. (Ладья оказывается на главной диагонали только в начальный и в конечный моменты времени.) Сколько у ладьи существует таких маршрутов?

ВверхВниз   Решение


Володя бежит по круговой дистанции с постоянной скоростью. В двух точках дистанции стоит по фотографу. После старта Володя 2 минуты был ближе к первому фотографу, затем 3 минуты – ближе ко второму фотографу, а потом снова ближе к первому. За какое время Володя пробежал весь круг?

ВверхВниз   Решение


Как при помощи чашечных весов без гирь разделить 24 кг гвоздей на две части  — 9 и 15 кг?

ВверхВниз   Решение


В окружность вписан равнобедренный треугольник с основанием a и углом при основании $ \alpha$. Кроме того, построена вторая окружность, касающаяся первой окружности и основания треугольника, причём точка касания является серединой основания. Найдите радиус второй окружности. Если решение не единственное, рассмотрите все случаи.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 790]      



Задача 53196

Темы:   [ Вписанные и описанные окружности ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 2-
Классы: 8,9

В окружность вписан равнобедренный треугольник с основанием a и углом при основании $ \alpha$. Кроме того, построена вторая окружность, касающаяся первой окружности и основания треугольника, причём точка касания является серединой основания. Найдите радиус второй окружности. Если решение не единственное, рассмотрите все случаи.

Прислать комментарий     Решение


Задача 52346

Темы:   [ Вписанные и описанные окружности ]
[ Медиана, проведенная к гипотенузе ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 2
Классы: 8,9

Докажите, что центр описанной окружности прямоугольного треугольника совпадает с серединой гипотенузы.

Прислать комментарий     Решение

Задача 34919

Тема:   [ Вписанные и описанные окружности ]
Сложность: 2
Классы: 8,9

Обязательно ли равны два равнобедренных треугольника, у которых равны боковые стороны и радиусы вписанных окружностей?
Прислать комментарий     Решение


Задача 52625

Тема:   [ Вписанные и описанные окружности ]
Сложность: 2
Классы: 8,9

Около данного круга опишите равнобедренный прямоугольный треугольник.

Прислать комментарий     Решение


Задача 52616

Тема:   [ Вписанные и описанные окружности ]
Сложность: 2+
Классы: 8,9

Гипотенуза прямоугольного треугольника равна 4 м. Найдите радиус описанной окружности.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 790]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .