Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 180]
В трапеции ABCD основание BC в два раза меньше основания AD. Из вершины D опущен перпендикуляр DE на сторону AB. Докажите, что СЕ = CD.
Точка D – середина гипотенузы AB прямоугольного треугольника ABC с катетами 3 и 4.
Найдите расстояние между центрами вписанных окружностей треугольников ACD и BCD.
Постройте прямоугольный треугольник по катету и медиане, проведённой из вершины прямого угла.
Сумма углов при одном из оснований трапеции равна 90°.
Докажите, что отрезок, соединяющий середины оснований трапеции, равен полуразности оснований.
Точка D – середина гипотенузы AB прямоугольного треугольника ABC. Окружность, вписанная в треугольник ACD, касается отрезка CD в его середине. Найдите острые углы треугольника ABC.
Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 180]