ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите равенство треугольников по двум сторонам и медиане, проведенной к одной из них.

   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 9702]      



Задача 53328

Тема:   [ Равные треугольники. Признаки равенства ]
Сложность: 2+
Классы: 8,9

Докажите равенство треугольников по двум сторонам и медиане, проведенной к одной из них.

Прислать комментарий     Решение

Задача 53340

Тема:   [ Равные треугольники. Признаки равенства ]
Сложность: 2+
Классы: 8,9

Даны два треугольника: ABC и A1B1C1. Известно, что  AB = A1B1AC = A1C1,  ∠A = ∠A1.  На сторонах AC и BC треугольника ABC взяты соответственно точки K и L, а на сторонах A1C1 и B1C1 треугольника A1B1C1 – точки K1 и L1 так, что  AK = A1K1LC = L1C1.  Докажите, что  KL = K1L1  и  AL = A1L1.

Прислать комментарий     Решение

Задача 53383

Тема:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2+
Классы: 8,9

ABC – равнобедренный треугольник с основанием AC, CD – биссектриса угла C,  ∠ADC = 150°.  Найдите ∠B.

Прислать комментарий     Решение

Задача 53395

Тема:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2+
Классы: 8,9

На плоскости расположены четыре прямые (см. рисунок). Известны углы между некоторыми из них:  α = 110°,  β = 60°,  γ = 80°.
Найдите углы между остальными парами прямых.

Прислать комментарий     Решение

Задача 53396

Тема:   [ Равные треугольники. Признаки равенства ]
Сложность: 2+
Классы: 8,9

На сторонах BC и B1C1 равных треугольников ABC и A1B1C1 взяты соответственно точки M и M1, причём  BM : MC = B1M1 : M1C1.
Докажите, что  AM = A1M1.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 9702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .